Kit M. Kovacs , Glen E. Liston , Adele K. Reinking , Sebastian Gerland , Christian Lydersen
{"title":"气候变暖对斯瓦尔巴特环斑海豹繁殖栖息地的影响","authors":"Kit M. Kovacs , Glen E. Liston , Adele K. Reinking , Sebastian Gerland , Christian Lydersen","doi":"10.1016/j.ecolmodel.2024.110790","DOIUrl":null,"url":null,"abstract":"<div><p>Global warming is occurring at an accelerated rate in the Arctic compared to other parts of the planet with sea-ice declines being among the most striking manifestations of Arctic climate-related changes. Impacts of ongoing Arctic environmental change have been documented for biota throughout marine ecosystems from protists to top predators. Ice-dependent species with specific habitat needs are particularly vulnerable to the ongoing changes. The ringed seal (<em>Pusa hispida</em>) is an ice-associated Arctic endemic species that gives birth and rests in snow caves built in drifts of snow over holes in the sea ice created and maintained by these seals. In this study we create a snow-on-sea-ice reproductive lair habitat model for ringed seals in the Svalbard Archipelago (Norway), a hot-spot of Arctic warming. We use SnowModel, a physics-based snow distribution and evolution simulation system, as the core for a lair habitat model. The model quantifies snow depth and blowing snow fluxes and also relates these variables to snow availability for seal lair habitat. This was accomplished by developing an ecologically informed snow variable that quantifies potential seal lair habitat availability as a function of blowing snow fluxes. Model simulations were performed for the period September 1987 – August 2021 (34 years) on a 500 m × 500 m grid using a daily time-step. Field observations of snow depth and gridded analyses of sea-ice concentration and near-surface (+10 m) atmospheric forcing (air temperature, relative humidity, precipitation, and wind speed and direction) were incorporated within the model simulations. The results show that both snow depth and potential seal lair habitat have been decreasing in Svalbard for the last two decades. If current trends continue, as expected, ringed seal lair habitat will cease to exist across much of the Svalbard Archipelago in the next decade, putting this important Arctic species at risk of regional extirpation.</p></div>","PeriodicalId":51043,"journal":{"name":"Ecological Modelling","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0304380024001789/pdfft?md5=4e7c2ac0eb37196012619fb633c49bd8&pid=1-s2.0-S0304380024001789-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Climate warming impacts on ringed seal breeding habitat in Svalbard\",\"authors\":\"Kit M. Kovacs , Glen E. Liston , Adele K. Reinking , Sebastian Gerland , Christian Lydersen\",\"doi\":\"10.1016/j.ecolmodel.2024.110790\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Global warming is occurring at an accelerated rate in the Arctic compared to other parts of the planet with sea-ice declines being among the most striking manifestations of Arctic climate-related changes. Impacts of ongoing Arctic environmental change have been documented for biota throughout marine ecosystems from protists to top predators. Ice-dependent species with specific habitat needs are particularly vulnerable to the ongoing changes. The ringed seal (<em>Pusa hispida</em>) is an ice-associated Arctic endemic species that gives birth and rests in snow caves built in drifts of snow over holes in the sea ice created and maintained by these seals. In this study we create a snow-on-sea-ice reproductive lair habitat model for ringed seals in the Svalbard Archipelago (Norway), a hot-spot of Arctic warming. We use SnowModel, a physics-based snow distribution and evolution simulation system, as the core for a lair habitat model. The model quantifies snow depth and blowing snow fluxes and also relates these variables to snow availability for seal lair habitat. This was accomplished by developing an ecologically informed snow variable that quantifies potential seal lair habitat availability as a function of blowing snow fluxes. Model simulations were performed for the period September 1987 – August 2021 (34 years) on a 500 m × 500 m grid using a daily time-step. Field observations of snow depth and gridded analyses of sea-ice concentration and near-surface (+10 m) atmospheric forcing (air temperature, relative humidity, precipitation, and wind speed and direction) were incorporated within the model simulations. The results show that both snow depth and potential seal lair habitat have been decreasing in Svalbard for the last two decades. If current trends continue, as expected, ringed seal lair habitat will cease to exist across much of the Svalbard Archipelago in the next decade, putting this important Arctic species at risk of regional extirpation.</p></div>\",\"PeriodicalId\":51043,\"journal\":{\"name\":\"Ecological Modelling\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0304380024001789/pdfft?md5=4e7c2ac0eb37196012619fb633c49bd8&pid=1-s2.0-S0304380024001789-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecological Modelling\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304380024001789\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Modelling","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304380024001789","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
Climate warming impacts on ringed seal breeding habitat in Svalbard
Global warming is occurring at an accelerated rate in the Arctic compared to other parts of the planet with sea-ice declines being among the most striking manifestations of Arctic climate-related changes. Impacts of ongoing Arctic environmental change have been documented for biota throughout marine ecosystems from protists to top predators. Ice-dependent species with specific habitat needs are particularly vulnerable to the ongoing changes. The ringed seal (Pusa hispida) is an ice-associated Arctic endemic species that gives birth and rests in snow caves built in drifts of snow over holes in the sea ice created and maintained by these seals. In this study we create a snow-on-sea-ice reproductive lair habitat model for ringed seals in the Svalbard Archipelago (Norway), a hot-spot of Arctic warming. We use SnowModel, a physics-based snow distribution and evolution simulation system, as the core for a lair habitat model. The model quantifies snow depth and blowing snow fluxes and also relates these variables to snow availability for seal lair habitat. This was accomplished by developing an ecologically informed snow variable that quantifies potential seal lair habitat availability as a function of blowing snow fluxes. Model simulations were performed for the period September 1987 – August 2021 (34 years) on a 500 m × 500 m grid using a daily time-step. Field observations of snow depth and gridded analyses of sea-ice concentration and near-surface (+10 m) atmospheric forcing (air temperature, relative humidity, precipitation, and wind speed and direction) were incorporated within the model simulations. The results show that both snow depth and potential seal lair habitat have been decreasing in Svalbard for the last two decades. If current trends continue, as expected, ringed seal lair habitat will cease to exist across much of the Svalbard Archipelago in the next decade, putting this important Arctic species at risk of regional extirpation.
期刊介绍:
The journal is concerned with the use of mathematical models and systems analysis for the description of ecological processes and for the sustainable management of resources. Human activity and well-being are dependent on and integrated with the functioning of ecosystems and the services they provide. We aim to understand these basic ecosystem functions using mathematical and conceptual modelling, systems analysis, thermodynamics, computer simulations, and ecological theory. This leads to a preference for process-based models embedded in theory with explicit causative agents as opposed to strictly statistical or correlative descriptions. These modelling methods can be applied to a wide spectrum of issues ranging from basic ecology to human ecology to socio-ecological systems. The journal welcomes research articles, short communications, review articles, letters to the editor, book reviews, and other communications. The journal also supports the activities of the [International Society of Ecological Modelling (ISEM)](http://www.isemna.org/).