Mohammed Al-Ogaili , Amir Etemad-Shahidi , Nick Cartwright , Sigurdur Sigurdarson
{"title":"两级装甲护堤防波堤的稳定性:实验研究","authors":"Mohammed Al-Ogaili , Amir Etemad-Shahidi , Nick Cartwright , Sigurdur Sigurdarson","doi":"10.1016/j.coastaleng.2024.104576","DOIUrl":null,"url":null,"abstract":"<div><p>The recession of a berm breakwater is a key parameter in ensuring its stability, and functionality, to protect coastal areas against wave impacts. Consequently, consideration of the expected recession in structural design is required to ensure the required objectives of the structure. In this study, physical model laboratory experiments were conducted to measure the recession of two-class armour berm breakwaters in response to varying sea state conditions (wave height, wave period, storm duration, and water depth at the structure's toe) and geometrical parameters (berm elevation from still water level, berm width, and rock size). A total of 110 tests were conducted under irregular wave forcing and the results were compared with those of existing formulae, derived specifically for mass armour and Icelandic-type berm breakwaters. Of the existing formulae, the Sigurdarson and Van der Meer (2013) formula that is derived for both mass armour and Icelandic-type berm breakwater outperforms the other formulas. Subsequently, a new empirical formula was developed to estimate the erosion depth based on the dimensionless water depth. The findings from this study could be instrumental for the structural design of two-class armour berm breakwaters under different sea states and geometrical configurations.</p></div>","PeriodicalId":50996,"journal":{"name":"Coastal Engineering","volume":"193 ","pages":"Article 104576"},"PeriodicalIF":4.2000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0378383924001248/pdfft?md5=33ef36008a62f2c72648b6545eed16f3&pid=1-s2.0-S0378383924001248-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Stability of two-class armour berm breakwaters: An experimental study\",\"authors\":\"Mohammed Al-Ogaili , Amir Etemad-Shahidi , Nick Cartwright , Sigurdur Sigurdarson\",\"doi\":\"10.1016/j.coastaleng.2024.104576\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The recession of a berm breakwater is a key parameter in ensuring its stability, and functionality, to protect coastal areas against wave impacts. Consequently, consideration of the expected recession in structural design is required to ensure the required objectives of the structure. In this study, physical model laboratory experiments were conducted to measure the recession of two-class armour berm breakwaters in response to varying sea state conditions (wave height, wave period, storm duration, and water depth at the structure's toe) and geometrical parameters (berm elevation from still water level, berm width, and rock size). A total of 110 tests were conducted under irregular wave forcing and the results were compared with those of existing formulae, derived specifically for mass armour and Icelandic-type berm breakwaters. Of the existing formulae, the Sigurdarson and Van der Meer (2013) formula that is derived for both mass armour and Icelandic-type berm breakwater outperforms the other formulas. Subsequently, a new empirical formula was developed to estimate the erosion depth based on the dimensionless water depth. The findings from this study could be instrumental for the structural design of two-class armour berm breakwaters under different sea states and geometrical configurations.</p></div>\",\"PeriodicalId\":50996,\"journal\":{\"name\":\"Coastal Engineering\",\"volume\":\"193 \",\"pages\":\"Article 104576\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0378383924001248/pdfft?md5=33ef36008a62f2c72648b6545eed16f3&pid=1-s2.0-S0378383924001248-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Coastal Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378383924001248\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coastal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378383924001248","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
摘要
护堤防波堤的后退是确保其稳定性和功能性的一个关键参数,以保护沿岸地区免受波 浪的冲击。因此,在结构设计中需要考虑预期的后退,以确保结构达到要求的目标。在这项研究中,进行了物理模型实验室实验,以测量两级装甲护堤防波堤在不同海况条件 (波高、波周期、风暴持续时间和结构趾部水深)和几何参数(护堤从静止水位的标高、 护堤宽度和岩石尺寸)下的退缩情况。在不规则波浪作用下,共进行了 110 次测试,并将测试结果与专门针对大规模装甲和冰岛型护堤防波堤得出的现有公式进行了比较。在现有公式中,Sigurdarson 和 Van der Meer(2013 年)的公式同时适用于质量装甲和冰岛型护堤防波堤,优于其他公式。随后,根据无量纲水深开发了一个新的经验公式来估算侵蚀深度。这项研究的结果有助于在不同海况和几何构造下对两级装甲护堤防波堤进行结构设计。
Stability of two-class armour berm breakwaters: An experimental study
The recession of a berm breakwater is a key parameter in ensuring its stability, and functionality, to protect coastal areas against wave impacts. Consequently, consideration of the expected recession in structural design is required to ensure the required objectives of the structure. In this study, physical model laboratory experiments were conducted to measure the recession of two-class armour berm breakwaters in response to varying sea state conditions (wave height, wave period, storm duration, and water depth at the structure's toe) and geometrical parameters (berm elevation from still water level, berm width, and rock size). A total of 110 tests were conducted under irregular wave forcing and the results were compared with those of existing formulae, derived specifically for mass armour and Icelandic-type berm breakwaters. Of the existing formulae, the Sigurdarson and Van der Meer (2013) formula that is derived for both mass armour and Icelandic-type berm breakwater outperforms the other formulas. Subsequently, a new empirical formula was developed to estimate the erosion depth based on the dimensionless water depth. The findings from this study could be instrumental for the structural design of two-class armour berm breakwaters under different sea states and geometrical configurations.
期刊介绍:
Coastal Engineering is an international medium for coastal engineers and scientists. Combining practical applications with modern technological and scientific approaches, such as mathematical and numerical modelling, laboratory and field observations and experiments, it publishes fundamental studies as well as case studies on the following aspects of coastal, harbour and offshore engineering: waves, currents and sediment transport; coastal, estuarine and offshore morphology; technical and functional design of coastal and harbour structures; morphological and environmental impact of coastal, harbour and offshore structures.