SWAT+ 中的地下水建模:现实基流模拟的注意事项

IF 4.9 Q2 ENGINEERING, ENVIRONMENTAL Groundwater for Sustainable Development Pub Date : 2024-07-11 DOI:10.1016/j.gsd.2024.101275
Alejandro Sánchez-Gómez , Christoph Schürz , Eugenio Molina-Navarro , Katrin Bieger
{"title":"SWAT+ 中的地下水建模:现实基流模拟的注意事项","authors":"Alejandro Sánchez-Gómez ,&nbsp;Christoph Schürz ,&nbsp;Eugenio Molina-Navarro ,&nbsp;Katrin Bieger","doi":"10.1016/j.gsd.2024.101275","DOIUrl":null,"url":null,"abstract":"<div><p>Hydrological models are valuable tools that support the evaluation and management of water resources. Among catchment scale models, SWAT has been widely used, and a revision of this model, SWAT+, was recently released. Groundwater simulation has been pointed out as one of the main weaknesses of these models, and despite the introduction of some improvements in the new version, an accurate simulation of groundwater flow is still a pending task. One of the most common issues is the inability of the model to maintain baseflow during long dry periods. Baseflow is common in aquifer areas and has great relevance for water quality and ecosystems. Although some authors proposed different solutions to its inaccurate simulation (e.g., editing aquifers configuration, coupling with other models, etc.) this work aimed to determine if a realistic groundwater simulation is possible using SWAT+ and determine the reasons why this is not being achieved. For this purpose, a groundwater dominated catchment was modelled, and different calibration approaches were carried out and compared, including strategies such as hard calibration, soft calibration, or sensitivity analysis. A comprehensive analysis of model outputs was crucial to achieve a model with a realistic simulation of groundwater contribution to the streamflow, both in amount and timing. The properly parameterization of some parameters (<em>perco</em>, <em>latq_co</em>, <em>lat_ttime</em>, and especially <em>alpha</em>) was key. Limitations of hard calibration were evidenced, such as the necessity of complementing this strategy with an evaluation of the simulation of hydrological processes. For those parameters governing streamflow components simulation, a detailed description of its functioning is included in this manuscript, together with some guidelines to achieve a statistically accurate model with a realistic groundwater flow simulation. Follow these recommendations will be useful for SWAT users, and will serve to create more reliable models.</p></div>","PeriodicalId":37879,"journal":{"name":"Groundwater for Sustainable Development","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352801X2400198X/pdfft?md5=b201dd64d1acb5b580ac1bd76a8211f4&pid=1-s2.0-S2352801X2400198X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Groundwater modelling in SWAT+: Considerations for a realistic baseflow simulation\",\"authors\":\"Alejandro Sánchez-Gómez ,&nbsp;Christoph Schürz ,&nbsp;Eugenio Molina-Navarro ,&nbsp;Katrin Bieger\",\"doi\":\"10.1016/j.gsd.2024.101275\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Hydrological models are valuable tools that support the evaluation and management of water resources. Among catchment scale models, SWAT has been widely used, and a revision of this model, SWAT+, was recently released. Groundwater simulation has been pointed out as one of the main weaknesses of these models, and despite the introduction of some improvements in the new version, an accurate simulation of groundwater flow is still a pending task. One of the most common issues is the inability of the model to maintain baseflow during long dry periods. Baseflow is common in aquifer areas and has great relevance for water quality and ecosystems. Although some authors proposed different solutions to its inaccurate simulation (e.g., editing aquifers configuration, coupling with other models, etc.) this work aimed to determine if a realistic groundwater simulation is possible using SWAT+ and determine the reasons why this is not being achieved. For this purpose, a groundwater dominated catchment was modelled, and different calibration approaches were carried out and compared, including strategies such as hard calibration, soft calibration, or sensitivity analysis. A comprehensive analysis of model outputs was crucial to achieve a model with a realistic simulation of groundwater contribution to the streamflow, both in amount and timing. The properly parameterization of some parameters (<em>perco</em>, <em>latq_co</em>, <em>lat_ttime</em>, and especially <em>alpha</em>) was key. Limitations of hard calibration were evidenced, such as the necessity of complementing this strategy with an evaluation of the simulation of hydrological processes. For those parameters governing streamflow components simulation, a detailed description of its functioning is included in this manuscript, together with some guidelines to achieve a statistically accurate model with a realistic groundwater flow simulation. Follow these recommendations will be useful for SWAT users, and will serve to create more reliable models.</p></div>\",\"PeriodicalId\":37879,\"journal\":{\"name\":\"Groundwater for Sustainable Development\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2352801X2400198X/pdfft?md5=b201dd64d1acb5b580ac1bd76a8211f4&pid=1-s2.0-S2352801X2400198X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Groundwater for Sustainable Development\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352801X2400198X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Groundwater for Sustainable Development","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352801X2400198X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

水文模型是支持水资源评估和管理的宝贵工具。在集水尺度模型中,SWAT 得到了广泛应用,最近又发布了该模型的修订版 SWAT+。地下水模拟一直被认为是这些模型的主要弱点之一,尽管新版模型进行了一些改进,但准确模拟地下水流仍是一项有待完成的任务。最常见的问题之一是模型无法在长期干旱期间保持基流。基流在含水层地区很常见,与水质和生态系统密切相关。虽然一些学者针对模拟不准确的问题提出了不同的解决方案(如编辑含水层配置、与其他模型耦合等),但本研究旨在确定使用 SWAT+ 是否可以进行真实的地下水模拟,并确定无法实现模拟的原因。为此,对一个以地下水为主的集水区进行了建模,并对不同的校准方法进行了比较,包括硬校准、软校准或敏感性分析等策略。对模型输出结果进行全面分析,对模型真实模拟地下水在水量和时间上对溪流的贡献至关重要。对一些参数(perco、latq_co、lat_ttime,尤其是 alpha)进行适当的参数化是关键。硬校准的局限性已得到证实,例如,有必要通过对水文过程模拟的评估来补充这一策略。本手稿详细描述了流体模拟参数的功能,并提供了一些指导原则,以实现一个统计精确、地下水流模拟逼真的模型。遵循这些建议将对 SWAT 用户有用,并有助于创建更可靠的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Groundwater modelling in SWAT+: Considerations for a realistic baseflow simulation

Hydrological models are valuable tools that support the evaluation and management of water resources. Among catchment scale models, SWAT has been widely used, and a revision of this model, SWAT+, was recently released. Groundwater simulation has been pointed out as one of the main weaknesses of these models, and despite the introduction of some improvements in the new version, an accurate simulation of groundwater flow is still a pending task. One of the most common issues is the inability of the model to maintain baseflow during long dry periods. Baseflow is common in aquifer areas and has great relevance for water quality and ecosystems. Although some authors proposed different solutions to its inaccurate simulation (e.g., editing aquifers configuration, coupling with other models, etc.) this work aimed to determine if a realistic groundwater simulation is possible using SWAT+ and determine the reasons why this is not being achieved. For this purpose, a groundwater dominated catchment was modelled, and different calibration approaches were carried out and compared, including strategies such as hard calibration, soft calibration, or sensitivity analysis. A comprehensive analysis of model outputs was crucial to achieve a model with a realistic simulation of groundwater contribution to the streamflow, both in amount and timing. The properly parameterization of some parameters (perco, latq_co, lat_ttime, and especially alpha) was key. Limitations of hard calibration were evidenced, such as the necessity of complementing this strategy with an evaluation of the simulation of hydrological processes. For those parameters governing streamflow components simulation, a detailed description of its functioning is included in this manuscript, together with some guidelines to achieve a statistically accurate model with a realistic groundwater flow simulation. Follow these recommendations will be useful for SWAT users, and will serve to create more reliable models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Groundwater for Sustainable Development
Groundwater for Sustainable Development Social Sciences-Geography, Planning and Development
CiteScore
11.50
自引率
10.20%
发文量
152
期刊介绍: Groundwater for Sustainable Development is directed to different stakeholders and professionals, including government and non-governmental organizations, international funding agencies, universities, public water institutions, public health and other public/private sector professionals, and other relevant institutions. It is aimed at professionals, academics and students in the fields of disciplines such as: groundwater and its connection to surface hydrology and environment, soil sciences, engineering, ecology, microbiology, atmospheric sciences, analytical chemistry, hydro-engineering, water technology, environmental ethics, economics, public health, policy, as well as social sciences, legal disciplines, or any other area connected with water issues. The objectives of this journal are to facilitate: • The improvement of effective and sustainable management of water resources across the globe. • The improvement of human access to groundwater resources in adequate quantity and good quality. • The meeting of the increasing demand for drinking and irrigation water needed for food security to contribute to a social and economically sound human development. • The creation of a global inter- and multidisciplinary platform and forum to improve our understanding of groundwater resources and to advocate their effective and sustainable management and protection against contamination. • Interdisciplinary information exchange and to stimulate scientific research in the fields of groundwater related sciences and social and health sciences required to achieve the United Nations Millennium Development Goals for sustainable development.
期刊最新文献
Spatial and temporal variations of dug well water quality in Korba basin, Chhattisgarh, India: Insights into hydrogeological characteristics Investigating the role of groundwater in ecosystem water use efficiency in India considering irrigation, climate and land use Assessing anthropogenic and natural influences on water quality in a critical shallow groundwater system: Insights from the Metauro River basin (Central Italy) Microplastics in water from the Cooum River, Chennai, India: An assessment of their distribution, composition, and environmental impact Effect of salinity-clay variation on the transient magnetic field in the Quaternary aquifer, theoretically and practically
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1