确定波浪周期在植被引起的波浪衰减中的作用

IF 4.2 2区 工程技术 Q1 ENGINEERING, CIVIL Coastal Engineering Pub Date : 2024-07-04 DOI:10.1016/j.coastaleng.2024.104568
Kunhui Huang , Zhan Hu , Zezheng Liu , Maike Paul , Tianping Xu , Tomohiro Suzuki
{"title":"确定波浪周期在植被引起的波浪衰减中的作用","authors":"Kunhui Huang ,&nbsp;Zhan Hu ,&nbsp;Zezheng Liu ,&nbsp;Maike Paul ,&nbsp;Tianping Xu ,&nbsp;Tomohiro Suzuki","doi":"10.1016/j.coastaleng.2024.104568","DOIUrl":null,"url":null,"abstract":"<div><p>Nature-based coastal protection that integrates vegetated wetlands for wave attenuation and erosion mitigation shows great potential. However, there is a lack of consensus on whether longer wave periods contribute to an increase or a reduction in the attenuation of waves in vegetated wetlands, which is primarily due to the disregard of vegetation submersion states. In the current study, we modified a classic model to pinpoint the conditional role of the period. Wave attenuation by vegetation is quantified as the product of two terms: wave decay rate and time of wave group travel through a unit length. By tracing the dynamics of these two terms, the model is in good agreement with the measurements and can well explain why wave attenuation increased with longer period (from 2 to 10 s) in submerged canopies (up to 10 times) but decreased in emergent canopies (by 75%). A maximum response period (2 - 10 s) was found, beyond which period has no effect on wave attenuation. Furthermore, we found that in field conditions, the variation in wave period can lead to a sharp reduction in wave dissipation. which is critical for coastal safety. For instance, a 62% decrease in wave period at Galveston Island corresponded to a 40% drop in wave dissipation. This work provides a comprehensive understanding on the role of wave period in wave dissipation by wetland vegetation, which would assist in safely implementing wetlands for coastal defence.</p></div>","PeriodicalId":50996,"journal":{"name":"Coastal Engineering","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pinpointing the role of wave period in vegetation induced wave attenuation\",\"authors\":\"Kunhui Huang ,&nbsp;Zhan Hu ,&nbsp;Zezheng Liu ,&nbsp;Maike Paul ,&nbsp;Tianping Xu ,&nbsp;Tomohiro Suzuki\",\"doi\":\"10.1016/j.coastaleng.2024.104568\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Nature-based coastal protection that integrates vegetated wetlands for wave attenuation and erosion mitigation shows great potential. However, there is a lack of consensus on whether longer wave periods contribute to an increase or a reduction in the attenuation of waves in vegetated wetlands, which is primarily due to the disregard of vegetation submersion states. In the current study, we modified a classic model to pinpoint the conditional role of the period. Wave attenuation by vegetation is quantified as the product of two terms: wave decay rate and time of wave group travel through a unit length. By tracing the dynamics of these two terms, the model is in good agreement with the measurements and can well explain why wave attenuation increased with longer period (from 2 to 10 s) in submerged canopies (up to 10 times) but decreased in emergent canopies (by 75%). A maximum response period (2 - 10 s) was found, beyond which period has no effect on wave attenuation. Furthermore, we found that in field conditions, the variation in wave period can lead to a sharp reduction in wave dissipation. which is critical for coastal safety. For instance, a 62% decrease in wave period at Galveston Island corresponded to a 40% drop in wave dissipation. This work provides a comprehensive understanding on the role of wave period in wave dissipation by wetland vegetation, which would assist in safely implementing wetlands for coastal defence.</p></div>\",\"PeriodicalId\":50996,\"journal\":{\"name\":\"Coastal Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Coastal Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378383924001169\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coastal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378383924001169","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

将植被湿地用于波浪衰减和侵蚀减缓的基于自然的海岸保护显示出巨大的潜力。然而,对于较长的波浪周期会增加还是减少植被湿地对波浪的衰减,目前还缺乏共识,这主要是由于忽略了植被的淹没状态。在当前的研究中,我们修改了一个经典模型,以确定周期的条件作用。植被对波浪的衰减被量化为两个项的乘积:波浪衰减率和波群通过单位长度的时间。通过追踪这两个项的动态变化,该模型与测量结果十分吻合,并能很好地解释为什么在沉水植被中,波浪衰减随着周期的延长(从 2 秒到 10 秒)而增加(多达 10 倍),但在出露植被中却减少(75%)。我们发现了一个最大响应周期(2 - 10 秒),超过这个周期对波浪衰减没有影响。此外,我们还发现,在野外条件下,波浪周期的变化会导致波浪消散的急剧下降,这对海岸安全至关重要。例如,在加尔维斯顿岛,波浪周期减少 62% 相当于波浪消散量减少 40%。这项研究全面了解了波浪周期在湿地植被消波中的作用,有助于安全地将湿地用于海岸防御。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Pinpointing the role of wave period in vegetation induced wave attenuation

Nature-based coastal protection that integrates vegetated wetlands for wave attenuation and erosion mitigation shows great potential. However, there is a lack of consensus on whether longer wave periods contribute to an increase or a reduction in the attenuation of waves in vegetated wetlands, which is primarily due to the disregard of vegetation submersion states. In the current study, we modified a classic model to pinpoint the conditional role of the period. Wave attenuation by vegetation is quantified as the product of two terms: wave decay rate and time of wave group travel through a unit length. By tracing the dynamics of these two terms, the model is in good agreement with the measurements and can well explain why wave attenuation increased with longer period (from 2 to 10 s) in submerged canopies (up to 10 times) but decreased in emergent canopies (by 75%). A maximum response period (2 - 10 s) was found, beyond which period has no effect on wave attenuation. Furthermore, we found that in field conditions, the variation in wave period can lead to a sharp reduction in wave dissipation. which is critical for coastal safety. For instance, a 62% decrease in wave period at Galveston Island corresponded to a 40% drop in wave dissipation. This work provides a comprehensive understanding on the role of wave period in wave dissipation by wetland vegetation, which would assist in safely implementing wetlands for coastal defence.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Coastal Engineering
Coastal Engineering 工程技术-工程:大洋
CiteScore
9.20
自引率
13.60%
发文量
0
审稿时长
3.5 months
期刊介绍: Coastal Engineering is an international medium for coastal engineers and scientists. Combining practical applications with modern technological and scientific approaches, such as mathematical and numerical modelling, laboratory and field observations and experiments, it publishes fundamental studies as well as case studies on the following aspects of coastal, harbour and offshore engineering: waves, currents and sediment transport; coastal, estuarine and offshore morphology; technical and functional design of coastal and harbour structures; morphological and environmental impact of coastal, harbour and offshore structures.
期刊最新文献
An enhanced model for an extreme wave impacting a vertical cylinder An adaptive internal mass source wave-maker for short wave generation Convergence and divergence of storm waves induced by multi-scale currents: Observations and coupled wave-current modeling Wave overtopping discharges at rubble mound structures in shallow water Computations of energetic nearshore waves: Are weakly dispersive phase-resolving models telling the same story?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1