用于提高光催化制氢性能的 TiO2/Bi2O2CO3 异质结:光生载流子分离

IF 6.7 1区 工程技术 Q2 ENERGY & FUELS Fuel Pub Date : 2024-07-13 DOI:10.1016/j.fuel.2024.132460
Ke Peng , Li Zhang , Yu Xie , Yongcun Ma , Jianhong Ye , Yuhua Dai , Yong Chen , Luhui Wang , Wei Zhang
{"title":"用于提高光催化制氢性能的 TiO2/Bi2O2CO3 异质结:光生载流子分离","authors":"Ke Peng ,&nbsp;Li Zhang ,&nbsp;Yu Xie ,&nbsp;Yongcun Ma ,&nbsp;Jianhong Ye ,&nbsp;Yuhua Dai ,&nbsp;Yong Chen ,&nbsp;Luhui Wang ,&nbsp;Wei Zhang","doi":"10.1016/j.fuel.2024.132460","DOIUrl":null,"url":null,"abstract":"<div><p>The high electron-hole complexation rate and wide band gap of TiO<sub>2</sub> are significant hindrances to photocatalytic hydrogen production. It has become a challenge to design a photocatalyst that improves the separation efficiency of photogenerated carriers. Bismuth-based hierarchical oxides with high chemical stability and good photocatalytic activity. In this study, we employed hydrothermal and physical mixing techniques to fabricate TiO<sub>2</sub>/Bi<sub>2</sub>O<sub>2</sub>CO<sub>3</sub> (TB) type II heterojunctions, aiming to enhance the efficiency of separating photogenerated carriers in the materials. The findings from the BET analysis indicate that the incorporation of a heterojunction structure leads to a significant increase in the material’s specific surface area. This, in turn, facilitates the exposure of more reactive sites of the catalyst material. The TPR, EIS, and PL findings indicate that the TB composites exhibit superior efficiency in separating photogenerated carriers and lower resistance to charge transfer when the Bi<sub>2</sub>O<sub>2</sub>CO<sub>3</sub> (BOC) mass fraction is at 5 %, resulting in a photocurrent intensity of approximately 1.9 μA/cm<sup>2</sup>. As a result, TB composites demonstrated remarkably efficient performance in producing hydrogen through photocatalysis. The hydrogen production rate of the optimal TB-5 ratio reached 3906.38 μmol g<sup>−1</sup> h<sup>−1</sup>, which was 27 times higher compared to pure TiO<sub>2</sub>. Additionally, the apparent quantum efficiency (AQY) achieved an impressive value of 5.028 %. The current study presents a new approach for developing low-cost TiO<sub>2</sub>-based photocatalysts with high efficiency in separating photogenerated carriers and producing hydrogen through photocatalysis.</p></div>","PeriodicalId":325,"journal":{"name":"Fuel","volume":null,"pages":null},"PeriodicalIF":6.7000,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TiO2/Bi2O2CO3 heterojunction for enhanced photocatalytic hydrogen production performance: Photogenerated carrier separation\",\"authors\":\"Ke Peng ,&nbsp;Li Zhang ,&nbsp;Yu Xie ,&nbsp;Yongcun Ma ,&nbsp;Jianhong Ye ,&nbsp;Yuhua Dai ,&nbsp;Yong Chen ,&nbsp;Luhui Wang ,&nbsp;Wei Zhang\",\"doi\":\"10.1016/j.fuel.2024.132460\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The high electron-hole complexation rate and wide band gap of TiO<sub>2</sub> are significant hindrances to photocatalytic hydrogen production. It has become a challenge to design a photocatalyst that improves the separation efficiency of photogenerated carriers. Bismuth-based hierarchical oxides with high chemical stability and good photocatalytic activity. In this study, we employed hydrothermal and physical mixing techniques to fabricate TiO<sub>2</sub>/Bi<sub>2</sub>O<sub>2</sub>CO<sub>3</sub> (TB) type II heterojunctions, aiming to enhance the efficiency of separating photogenerated carriers in the materials. The findings from the BET analysis indicate that the incorporation of a heterojunction structure leads to a significant increase in the material’s specific surface area. This, in turn, facilitates the exposure of more reactive sites of the catalyst material. The TPR, EIS, and PL findings indicate that the TB composites exhibit superior efficiency in separating photogenerated carriers and lower resistance to charge transfer when the Bi<sub>2</sub>O<sub>2</sub>CO<sub>3</sub> (BOC) mass fraction is at 5 %, resulting in a photocurrent intensity of approximately 1.9 μA/cm<sup>2</sup>. As a result, TB composites demonstrated remarkably efficient performance in producing hydrogen through photocatalysis. The hydrogen production rate of the optimal TB-5 ratio reached 3906.38 μmol g<sup>−1</sup> h<sup>−1</sup>, which was 27 times higher compared to pure TiO<sub>2</sub>. Additionally, the apparent quantum efficiency (AQY) achieved an impressive value of 5.028 %. The current study presents a new approach for developing low-cost TiO<sub>2</sub>-based photocatalysts with high efficiency in separating photogenerated carriers and producing hydrogen through photocatalysis.</p></div>\",\"PeriodicalId\":325,\"journal\":{\"name\":\"Fuel\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fuel\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0016236124016089\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016236124016089","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

二氧化钛的高电子-空穴复合率和宽带隙是光催化制氢的重大障碍。如何设计一种能提高光生载流子分离效率的光催化剂已成为一项挑战。铋基分层氧化物具有较高的化学稳定性和良好的光催化活性。在本研究中,我们采用水热法和物理混合技术制备了 TiO2/Bi2O2CO3 (TB) II 型异质结,旨在提高材料中光生载流子的分离效率。BET 分析结果表明,加入异质结结构可显著增加材料的比表面积。这反过来又促进了催化剂材料更多反应位点的暴露。TPR、EIS 和 PL 研究结果表明,当 Bi2O2CO3(BOC)的质量分数为 5% 时,TB 复合材料在分离光生载流子方面表现出更高的效率和更低的电荷转移电阻,从而产生约 1.9 μA/cm2 的光电流强度。因此,TB 复合材料在通过光催化产生氢气方面表现出了显著的高效性能。最佳 TB-5 比率的制氢率达到 3906.38 μmol g-1 h-1,是纯 TiO2 的 27 倍。此外,表观量子效率(AQY)达到了令人印象深刻的 5.028 %。目前的研究为开发低成本、高效分离光生载流子并通过光催化产生氢气的基于 TiO2 的光催化剂提供了一种新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TiO2/Bi2O2CO3 heterojunction for enhanced photocatalytic hydrogen production performance: Photogenerated carrier separation

The high electron-hole complexation rate and wide band gap of TiO2 are significant hindrances to photocatalytic hydrogen production. It has become a challenge to design a photocatalyst that improves the separation efficiency of photogenerated carriers. Bismuth-based hierarchical oxides with high chemical stability and good photocatalytic activity. In this study, we employed hydrothermal and physical mixing techniques to fabricate TiO2/Bi2O2CO3 (TB) type II heterojunctions, aiming to enhance the efficiency of separating photogenerated carriers in the materials. The findings from the BET analysis indicate that the incorporation of a heterojunction structure leads to a significant increase in the material’s specific surface area. This, in turn, facilitates the exposure of more reactive sites of the catalyst material. The TPR, EIS, and PL findings indicate that the TB composites exhibit superior efficiency in separating photogenerated carriers and lower resistance to charge transfer when the Bi2O2CO3 (BOC) mass fraction is at 5 %, resulting in a photocurrent intensity of approximately 1.9 μA/cm2. As a result, TB composites demonstrated remarkably efficient performance in producing hydrogen through photocatalysis. The hydrogen production rate of the optimal TB-5 ratio reached 3906.38 μmol g−1 h−1, which was 27 times higher compared to pure TiO2. Additionally, the apparent quantum efficiency (AQY) achieved an impressive value of 5.028 %. The current study presents a new approach for developing low-cost TiO2-based photocatalysts with high efficiency in separating photogenerated carriers and producing hydrogen through photocatalysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fuel
Fuel 工程技术-工程:化工
CiteScore
12.80
自引率
20.30%
发文量
3506
审稿时长
64 days
期刊介绍: The exploration of energy sources remains a critical matter of study. For the past nine decades, fuel has consistently held the forefront in primary research efforts within the field of energy science. This area of investigation encompasses a wide range of subjects, with a particular emphasis on emerging concerns like environmental factors and pollution.
期刊最新文献
Influence of aluminum nanoparticles in alternative fuel: Single droplet combustion experiments and modeling Study on energy instability mechanism of composite coal seam based on the coupling effect of damage and unsteady diffusion Surface synergistic effects of ReNi alloy and ReOx for promoting hydrodeoxygenation of lauric acid to value-added products The structure activity relationship of promoted La doped Ni-CeO2 catalysts prepared by continuous-flow microreactor for low temperature CO2 methanation The oxidation of NH3/CO/O2/H2O system in a plug flow reactor: Experimental and kinetic modeling study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1