{"title":"特征为 2 的有限域上最对称的光滑立方曲面","authors":"Anastasia V. Vikulova","doi":"10.1016/j.ffa.2024.102470","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we find the largest automorphism group of a smooth cubic surface over any finite field of characteristic 2. We prove that if the order of the field is a power of 4, then the automorphism group of maximal order of a smooth cubic surface over this field is <span><math><msub><mrow><mi>PSU</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span>. If the order of the field of characteristic 2 is not a power of 4, then we prove that the automorphism group of maximal order of a smooth cubic surface over this field is the symmetric group of degree 6. Moreover, we prove that smooth cubic surfaces with such properties are unique up to isomorphism.</p></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The most symmetric smooth cubic surface over a finite field of characteristic 2\",\"authors\":\"Anastasia V. Vikulova\",\"doi\":\"10.1016/j.ffa.2024.102470\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper we find the largest automorphism group of a smooth cubic surface over any finite field of characteristic 2. We prove that if the order of the field is a power of 4, then the automorphism group of maximal order of a smooth cubic surface over this field is <span><math><msub><mrow><mi>PSU</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span>. If the order of the field of characteristic 2 is not a power of 4, then we prove that the automorphism group of maximal order of a smooth cubic surface over this field is the symmetric group of degree 6. Moreover, we prove that smooth cubic surfaces with such properties are unique up to isomorphism.</p></div>\",\"PeriodicalId\":50446,\"journal\":{\"name\":\"Finite Fields and Their Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Finite Fields and Their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1071579724001096\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Fields and Their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1071579724001096","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
The most symmetric smooth cubic surface over a finite field of characteristic 2
In this paper we find the largest automorphism group of a smooth cubic surface over any finite field of characteristic 2. We prove that if the order of the field is a power of 4, then the automorphism group of maximal order of a smooth cubic surface over this field is . If the order of the field of characteristic 2 is not a power of 4, then we prove that the automorphism group of maximal order of a smooth cubic surface over this field is the symmetric group of degree 6. Moreover, we prove that smooth cubic surfaces with such properties are unique up to isomorphism.
期刊介绍:
Finite Fields and Their Applications is a peer-reviewed technical journal publishing papers in finite field theory as well as in applications of finite fields. As a result of applications in a wide variety of areas, finite fields are increasingly important in several areas of mathematics, including linear and abstract algebra, number theory and algebraic geometry, as well as in computer science, statistics, information theory, and engineering.
For cohesion, and because so many applications rely on various theoretical properties of finite fields, it is essential that there be a core of high-quality papers on theoretical aspects. In addition, since much of the vitality of the area comes from computational problems, the journal publishes papers on computational aspects of finite fields as well as on algorithms and complexity of finite field-related methods.
The journal also publishes papers in various applications including, but not limited to, algebraic coding theory, cryptology, combinatorial design theory, pseudorandom number generation, and linear recurring sequences. There are other areas of application to be included, but the important point is that finite fields play a nontrivial role in the theory, application, or algorithm.