Lindsay A. Beaton-Green , Jessica M. Mayenburg , Leonora Marro , Sarita Cuadros Sanchez , Sylvie Lachapelle , Ruth C. Wilkins
{"title":"基于多参数成像流式细胞仪的细胞因子抑制微核试验:减少培养时间和血容量,提高效率","authors":"Lindsay A. Beaton-Green , Jessica M. Mayenburg , Leonora Marro , Sarita Cuadros Sanchez , Sylvie Lachapelle , Ruth C. Wilkins","doi":"10.1016/j.mrgentox.2024.503792","DOIUrl":null,"url":null,"abstract":"<div><p>In the event of a large-scale incident involving radiological or nuclear exposures, there is a potential for large numbers of individuals to have received doses of radiation sufficient to cause adverse health effects. It is imperative to quickly identify these individuals in order to provide information to the medical community to assist in making decisions about their treatment. The cytokinesis-block micronucleus assay is a well-established method for performing biodosimetry. This assay has previously been adapted to imaging flow cytometry and has been validated as a high-throughput option for providing dose estimates in the range of 0–10 Gy. The goal of this study was to test the ability to further optimize the assay by reducing the time of culture to 48 h from 68 h as well as reducing the volume of blood required for the analysis to 200 μL from 2 mL. These modifications would provide efficiencies in time and ease of processing impacting the ability to manage large numbers of samples and provide dose estimates in a timely manner. Results demonstrated that either the blood volume or the culture time could be reduced while maintaining dose estimates with sufficient accuracy for triage analysis. Reducing both the blood volume and culture time, however, resulted in poor dose estimates. In conclusion, depending on the needs of the scenario, either culture time or the blood volume could be reduced to improve the efficiency of analysis for mass casualty scenarios.</p></div>","PeriodicalId":18799,"journal":{"name":"Mutation research. Genetic toxicology and environmental mutagenesis","volume":"898 ","pages":"Article 503792"},"PeriodicalIF":2.3000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1383571824000688/pdfft?md5=c90def62cd5f4b22ecf9d6ef2bdc13b0&pid=1-s2.0-S1383571824000688-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Multiparameter imaging flow cytometry-based cytokinesis-block micronucleus assay: Reduction of culture time and blood volume for improved efficiency\",\"authors\":\"Lindsay A. Beaton-Green , Jessica M. Mayenburg , Leonora Marro , Sarita Cuadros Sanchez , Sylvie Lachapelle , Ruth C. Wilkins\",\"doi\":\"10.1016/j.mrgentox.2024.503792\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the event of a large-scale incident involving radiological or nuclear exposures, there is a potential for large numbers of individuals to have received doses of radiation sufficient to cause adverse health effects. It is imperative to quickly identify these individuals in order to provide information to the medical community to assist in making decisions about their treatment. The cytokinesis-block micronucleus assay is a well-established method for performing biodosimetry. This assay has previously been adapted to imaging flow cytometry and has been validated as a high-throughput option for providing dose estimates in the range of 0–10 Gy. The goal of this study was to test the ability to further optimize the assay by reducing the time of culture to 48 h from 68 h as well as reducing the volume of blood required for the analysis to 200 μL from 2 mL. These modifications would provide efficiencies in time and ease of processing impacting the ability to manage large numbers of samples and provide dose estimates in a timely manner. Results demonstrated that either the blood volume or the culture time could be reduced while maintaining dose estimates with sufficient accuracy for triage analysis. Reducing both the blood volume and culture time, however, resulted in poor dose estimates. In conclusion, depending on the needs of the scenario, either culture time or the blood volume could be reduced to improve the efficiency of analysis for mass casualty scenarios.</p></div>\",\"PeriodicalId\":18799,\"journal\":{\"name\":\"Mutation research. Genetic toxicology and environmental mutagenesis\",\"volume\":\"898 \",\"pages\":\"Article 503792\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1383571824000688/pdfft?md5=c90def62cd5f4b22ecf9d6ef2bdc13b0&pid=1-s2.0-S1383571824000688-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mutation research. Genetic toxicology and environmental mutagenesis\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1383571824000688\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mutation research. Genetic toxicology and environmental mutagenesis","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1383571824000688","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Multiparameter imaging flow cytometry-based cytokinesis-block micronucleus assay: Reduction of culture time and blood volume for improved efficiency
In the event of a large-scale incident involving radiological or nuclear exposures, there is a potential for large numbers of individuals to have received doses of radiation sufficient to cause adverse health effects. It is imperative to quickly identify these individuals in order to provide information to the medical community to assist in making decisions about their treatment. The cytokinesis-block micronucleus assay is a well-established method for performing biodosimetry. This assay has previously been adapted to imaging flow cytometry and has been validated as a high-throughput option for providing dose estimates in the range of 0–10 Gy. The goal of this study was to test the ability to further optimize the assay by reducing the time of culture to 48 h from 68 h as well as reducing the volume of blood required for the analysis to 200 μL from 2 mL. These modifications would provide efficiencies in time and ease of processing impacting the ability to manage large numbers of samples and provide dose estimates in a timely manner. Results demonstrated that either the blood volume or the culture time could be reduced while maintaining dose estimates with sufficient accuracy for triage analysis. Reducing both the blood volume and culture time, however, resulted in poor dose estimates. In conclusion, depending on the needs of the scenario, either culture time or the blood volume could be reduced to improve the efficiency of analysis for mass casualty scenarios.
期刊介绍:
Mutation Research - Genetic Toxicology and Environmental Mutagenesis (MRGTEM) publishes papers advancing knowledge in the field of genetic toxicology. Papers are welcomed in the following areas:
New developments in genotoxicity testing of chemical agents (e.g. improvements in methodology of assay systems and interpretation of results).
Alternatives to and refinement of the use of animals in genotoxicity testing.
Nano-genotoxicology, the study of genotoxicity hazards and risks related to novel man-made nanomaterials.
Studies of epigenetic changes in relation to genotoxic effects.
The use of structure-activity relationships in predicting genotoxic effects.
The isolation and chemical characterization of novel environmental mutagens.
The measurement of genotoxic effects in human populations, when accompanied by quantitative measurements of environmental or occupational exposures.
The application of novel technologies for assessing the hazard and risks associated with genotoxic substances (e.g. OMICS or other high-throughput approaches to genotoxicity testing).
MRGTEM is now accepting submissions for a new section of the journal: Current Topics in Genotoxicity Testing, that will be dedicated to the discussion of current issues relating to design, interpretation and strategic use of genotoxicity tests. This section is envisaged to include discussions relating to the development of new international testing guidelines, but also to wider topics in the field. The evaluation of contrasting or opposing viewpoints is welcomed as long as the presentation is in accordance with the journal''s aims, scope, and policies.