{"title":"基于深度学习的互补性专利识别方法","authors":"Jinzhu Zhang, Jialu Shi, Peiyu Zhang","doi":"10.1016/j.joi.2024.101561","DOIUrl":null,"url":null,"abstract":"<div><p>Current studies on technology mining and analysis often focus on patent similarity, with relatively limited research on patent complementarity. Specifically, the hierarchical relationships among patents are seldom used and a standardized complementary patents dataset has not been established. In addition, it is necessary to utilize both network structure features and text content features of patents, and find the most suitable representation learning method for them. Finally, the relationships among different dimensions of feature representations are complex, making it essential to learn the contributions of each dimension considering complex interactions. Therefore, this paper first constructs a complementary patents dataset using hierarchical relationships contained in IPC numbers. Secondly, we design three types of embedding methods for patent semantic representation, including network embedding, text embedding and fusion embedding. Thirdly, we propose a deep learning framework enhanced by the CBAM (Convolutional Block Attention Module) to deal with the complex interactions between different dimensions of patent representation. The result shows that the proposed method CompGCN combined with ESimCSE_Attention performs best for complementary patent identification and the F1 score reaches 95.76 %. In addition, HeGAN and ESimCSE_Attention are the most suitable embedding methods for network structure and text content respectively. These results not only validate the effectiveness of the proposed approach, but also provide helpful and useful suggestions for method selection and complex relationships mining.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An approach for identifying complementary patents based on deep learning\",\"authors\":\"Jinzhu Zhang, Jialu Shi, Peiyu Zhang\",\"doi\":\"10.1016/j.joi.2024.101561\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Current studies on technology mining and analysis often focus on patent similarity, with relatively limited research on patent complementarity. Specifically, the hierarchical relationships among patents are seldom used and a standardized complementary patents dataset has not been established. In addition, it is necessary to utilize both network structure features and text content features of patents, and find the most suitable representation learning method for them. Finally, the relationships among different dimensions of feature representations are complex, making it essential to learn the contributions of each dimension considering complex interactions. Therefore, this paper first constructs a complementary patents dataset using hierarchical relationships contained in IPC numbers. Secondly, we design three types of embedding methods for patent semantic representation, including network embedding, text embedding and fusion embedding. Thirdly, we propose a deep learning framework enhanced by the CBAM (Convolutional Block Attention Module) to deal with the complex interactions between different dimensions of patent representation. The result shows that the proposed method CompGCN combined with ESimCSE_Attention performs best for complementary patent identification and the F1 score reaches 95.76 %. In addition, HeGAN and ESimCSE_Attention are the most suitable embedding methods for network structure and text content respectively. These results not only validate the effectiveness of the proposed approach, but also provide helpful and useful suggestions for method selection and complex relationships mining.</p></div>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1751157724000749\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1751157724000749","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
An approach for identifying complementary patents based on deep learning
Current studies on technology mining and analysis often focus on patent similarity, with relatively limited research on patent complementarity. Specifically, the hierarchical relationships among patents are seldom used and a standardized complementary patents dataset has not been established. In addition, it is necessary to utilize both network structure features and text content features of patents, and find the most suitable representation learning method for them. Finally, the relationships among different dimensions of feature representations are complex, making it essential to learn the contributions of each dimension considering complex interactions. Therefore, this paper first constructs a complementary patents dataset using hierarchical relationships contained in IPC numbers. Secondly, we design three types of embedding methods for patent semantic representation, including network embedding, text embedding and fusion embedding. Thirdly, we propose a deep learning framework enhanced by the CBAM (Convolutional Block Attention Module) to deal with the complex interactions between different dimensions of patent representation. The result shows that the proposed method CompGCN combined with ESimCSE_Attention performs best for complementary patent identification and the F1 score reaches 95.76 %. In addition, HeGAN and ESimCSE_Attention are the most suitable embedding methods for network structure and text content respectively. These results not only validate the effectiveness of the proposed approach, but also provide helpful and useful suggestions for method selection and complex relationships mining.