微藻和蓝藻作为抗氧化酶和酶抑制剂的天然来源,可治疗老年痴呆症和糖尿病

IF 4.6 2区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Algal Research-Biomass Biofuels and Bioproducts Pub Date : 2024-07-09 DOI:10.1016/j.algal.2024.103610
Kilian Odenthal , Emmanuel Nunes , Nuno Nunes , Tomásia Fernandes , Igor A. Fernandes , Miguel A.A. Pinheiro de Carvalho
{"title":"微藻和蓝藻作为抗氧化酶和酶抑制剂的天然来源,可治疗老年痴呆症和糖尿病","authors":"Kilian Odenthal ,&nbsp;Emmanuel Nunes ,&nbsp;Nuno Nunes ,&nbsp;Tomásia Fernandes ,&nbsp;Igor A. Fernandes ,&nbsp;Miguel A.A. Pinheiro de Carvalho","doi":"10.1016/j.algal.2024.103610","DOIUrl":null,"url":null,"abstract":"<div><p>Microalgae and cyanobacteria biomass can be cultivated in large amounts, producing a variety of bioactive compounds. As a result, various industries have begun to study the potential of this biomass in a wide range of applications such as biofuel production, environmental remediation for contaminated soil and water, food supplements, and as a source of feed for aquaculture. The cultivation conditions have a profound impact on microalgae biochemical composition. Therefore, the culture conditions must be tailored to the specific application of the biomass. This entails careful control of factors such as light exposure, nutrient concentration, and the application of stress conditions. To further enhance the value of microalgae biomass beyond its nutritional analysis, this review aims to explore the potential of the biomass as biofactories for producing antioxidant enzymes and inhibitors targeting Alzheimer's and diabetes diseases. Both chronic diseases are a growing concern due to an aging population and an increase in obesity rates. Microalgae when exposed to stressful conditions enhance the activity of antioxidant enzymes. However, further studies in the isolation and storage of these enzymes need to be performed. From the literature reviewed microalgae exhibited great potential in inhibiting key enzymes involved in Alzheimer's and Diabetes. The inhibitory potential was observed both in vitro and at a cellular level making them a promising natural alternative to current medication used to inhibit these enzymes.</p></div>","PeriodicalId":7855,"journal":{"name":"Algal Research-Biomass Biofuels and Bioproducts","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2211926424002224/pdfft?md5=b17c5b452e9087d6d48f3af47459b503&pid=1-s2.0-S2211926424002224-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Microalgae and cyanobacteria as natural sources of antioxidant enzymes and enzyme inhibitors for Alzheimer's and diabetes\",\"authors\":\"Kilian Odenthal ,&nbsp;Emmanuel Nunes ,&nbsp;Nuno Nunes ,&nbsp;Tomásia Fernandes ,&nbsp;Igor A. Fernandes ,&nbsp;Miguel A.A. Pinheiro de Carvalho\",\"doi\":\"10.1016/j.algal.2024.103610\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Microalgae and cyanobacteria biomass can be cultivated in large amounts, producing a variety of bioactive compounds. As a result, various industries have begun to study the potential of this biomass in a wide range of applications such as biofuel production, environmental remediation for contaminated soil and water, food supplements, and as a source of feed for aquaculture. The cultivation conditions have a profound impact on microalgae biochemical composition. Therefore, the culture conditions must be tailored to the specific application of the biomass. This entails careful control of factors such as light exposure, nutrient concentration, and the application of stress conditions. To further enhance the value of microalgae biomass beyond its nutritional analysis, this review aims to explore the potential of the biomass as biofactories for producing antioxidant enzymes and inhibitors targeting Alzheimer's and diabetes diseases. Both chronic diseases are a growing concern due to an aging population and an increase in obesity rates. Microalgae when exposed to stressful conditions enhance the activity of antioxidant enzymes. However, further studies in the isolation and storage of these enzymes need to be performed. From the literature reviewed microalgae exhibited great potential in inhibiting key enzymes involved in Alzheimer's and Diabetes. The inhibitory potential was observed both in vitro and at a cellular level making them a promising natural alternative to current medication used to inhibit these enzymes.</p></div>\",\"PeriodicalId\":7855,\"journal\":{\"name\":\"Algal Research-Biomass Biofuels and Bioproducts\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2211926424002224/pdfft?md5=b17c5b452e9087d6d48f3af47459b503&pid=1-s2.0-S2211926424002224-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algal Research-Biomass Biofuels and Bioproducts\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2211926424002224\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algal Research-Biomass Biofuels and Bioproducts","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211926424002224","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

微藻和蓝藻生物质可以大量培养,产生多种生物活性化合物。因此,各行各业已开始研究这种生物质在生物燃料生产、受污染土壤和水的环境修复、食品补充剂以及作为水产养殖饲料来源等方面的广泛应用潜力。培养条件对微藻类的生化成分有着深远的影响。因此,培养条件必须适合生物质的具体应用。这就需要仔细控制光照、营养浓度和应激条件的应用等因素。为了进一步提高微藻生物质在营养分析之外的价值,本综述旨在探讨微藻生物质作为生物工厂生产抗氧化酶和抑制剂的潜力,这些酶和抑制剂主要针对阿尔茨海默氏症和糖尿病。由于人口老龄化和肥胖率上升,这两种慢性疾病日益受到关注。微藻在压力条件下会增强抗氧化酶的活性。不过,还需要对这些酶的分离和储存进行进一步研究。从查阅的文献来看,微藻在抑制与阿尔茨海默氏症和糖尿病有关的关键酶方面表现出巨大的潜力。在体外和细胞水平上都观察到了这种抑制潜力,使它们成为目前用于抑制这些酶的药物的一种很有前途的天然替代品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Microalgae and cyanobacteria as natural sources of antioxidant enzymes and enzyme inhibitors for Alzheimer's and diabetes

Microalgae and cyanobacteria biomass can be cultivated in large amounts, producing a variety of bioactive compounds. As a result, various industries have begun to study the potential of this biomass in a wide range of applications such as biofuel production, environmental remediation for contaminated soil and water, food supplements, and as a source of feed for aquaculture. The cultivation conditions have a profound impact on microalgae biochemical composition. Therefore, the culture conditions must be tailored to the specific application of the biomass. This entails careful control of factors such as light exposure, nutrient concentration, and the application of stress conditions. To further enhance the value of microalgae biomass beyond its nutritional analysis, this review aims to explore the potential of the biomass as biofactories for producing antioxidant enzymes and inhibitors targeting Alzheimer's and diabetes diseases. Both chronic diseases are a growing concern due to an aging population and an increase in obesity rates. Microalgae when exposed to stressful conditions enhance the activity of antioxidant enzymes. However, further studies in the isolation and storage of these enzymes need to be performed. From the literature reviewed microalgae exhibited great potential in inhibiting key enzymes involved in Alzheimer's and Diabetes. The inhibitory potential was observed both in vitro and at a cellular level making them a promising natural alternative to current medication used to inhibit these enzymes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Algal Research-Biomass Biofuels and Bioproducts
Algal Research-Biomass Biofuels and Bioproducts BIOTECHNOLOGY & APPLIED MICROBIOLOGY-
CiteScore
9.40
自引率
7.80%
发文量
332
期刊介绍: Algal Research is an international phycology journal covering all areas of emerging technologies in algae biology, biomass production, cultivation, harvesting, extraction, bioproducts, biorefinery, engineering, and econometrics. Algae is defined to include cyanobacteria, microalgae, and protists and symbionts of interest in biotechnology. The journal publishes original research and reviews for the following scope: algal biology, including but not exclusive to: phylogeny, biodiversity, molecular traits, metabolic regulation, and genetic engineering, algal cultivation, e.g. phototrophic systems, heterotrophic systems, and mixotrophic systems, algal harvesting and extraction systems, biotechnology to convert algal biomass and components into biofuels and bioproducts, e.g., nutraceuticals, pharmaceuticals, animal feed, plastics, etc. algal products and their economic assessment
期刊最新文献
Enhancement of intracellular extraction from Oscillatoria okine and the potential use of the extract as a supplement to fetal bovine serum in animal cell culture Characterization of natural compounds derived from diatom C. gracilis as potential therapeutic agents: An in-silico networking and docking study Potentiating Chlorella vulgaris bioinput as a growth biostimulant in the production of basil seedlings with the addition of vitamin B3 Instant Controlled Pressure Drop (DIC) as an innovative pre-treatment for extraction of natural compounds from the brown seaweed Sargassum muticum (Yendo) Fensholt 1955 (Ochrophytina, Fucales) Exploring protein N-glycosylation in the green microalga Dunaliella salina
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1