用于高性能抗冲击弹性体的生物启发式软硬梯度网络结构

IF 5.4 1区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY GIANT Pub Date : 2024-07-06 DOI:10.1016/j.giant.2024.100320
Jin Huang , Hangsheng Zhou , Li Zhang , Hao Zha , Wei Shi , Tianyi Zhao , Mingjie Liu
{"title":"用于高性能抗冲击弹性体的生物启发式软硬梯度网络结构","authors":"Jin Huang ,&nbsp;Hangsheng Zhou ,&nbsp;Li Zhang ,&nbsp;Hao Zha ,&nbsp;Wei Shi ,&nbsp;Tianyi Zhao ,&nbsp;Mingjie Liu","doi":"10.1016/j.giant.2024.100320","DOIUrl":null,"url":null,"abstract":"<div><p>Traditional impact-resistance materials relying on the combination of supporting materials and energy-dissipation elastomers can effectively reduce shock load, yet the sharp interface between two types of materials causes discontinuous stress transfer and cracking. Here, inspired by the squid beak, we report a type of high impact-resistance gradient elastomers with large-scale modulus gradient with about three orders of magnitude (modulus range of 7 × 10<sup>3</sup> ∼ 7 × 10<sup>6</sup> Pa) and high energy dissipation (loss factor &gt; 0.6) over a wide temperature range by diffusively introducing stiff polymers in a highly damping elastomer with controlled mechanical properties. Under the action of an external force, our gradient elastomers exhibit soft-while-stiff attributes, combining cushioning and support. In drop hammer impact tests, our gradient materials can reduce impact strength by 80 %, significantly better than commercial protective gear. It is worth mentioning that the modulus of the bottom layer matches that of the tissues for better protection.</p></div>","PeriodicalId":34151,"journal":{"name":"GIANT","volume":"19 ","pages":"Article 100320"},"PeriodicalIF":5.4000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666542524000845/pdfft?md5=30df6ca8cd56320c4816db761a8e5035&pid=1-s2.0-S2666542524000845-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Bioinspired stiff–soft gradient network structure for high-performance impact-resistant elastomers\",\"authors\":\"Jin Huang ,&nbsp;Hangsheng Zhou ,&nbsp;Li Zhang ,&nbsp;Hao Zha ,&nbsp;Wei Shi ,&nbsp;Tianyi Zhao ,&nbsp;Mingjie Liu\",\"doi\":\"10.1016/j.giant.2024.100320\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Traditional impact-resistance materials relying on the combination of supporting materials and energy-dissipation elastomers can effectively reduce shock load, yet the sharp interface between two types of materials causes discontinuous stress transfer and cracking. Here, inspired by the squid beak, we report a type of high impact-resistance gradient elastomers with large-scale modulus gradient with about three orders of magnitude (modulus range of 7 × 10<sup>3</sup> ∼ 7 × 10<sup>6</sup> Pa) and high energy dissipation (loss factor &gt; 0.6) over a wide temperature range by diffusively introducing stiff polymers in a highly damping elastomer with controlled mechanical properties. Under the action of an external force, our gradient elastomers exhibit soft-while-stiff attributes, combining cushioning and support. In drop hammer impact tests, our gradient materials can reduce impact strength by 80 %, significantly better than commercial protective gear. It is worth mentioning that the modulus of the bottom layer matches that of the tissues for better protection.</p></div>\",\"PeriodicalId\":34151,\"journal\":{\"name\":\"GIANT\",\"volume\":\"19 \",\"pages\":\"Article 100320\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666542524000845/pdfft?md5=30df6ca8cd56320c4816db761a8e5035&pid=1-s2.0-S2666542524000845-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GIANT\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666542524000845\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GIANT","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666542524000845","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

传统的抗冲击材料主要依靠支撑材料和消能弹性体的组合来有效降低冲击载荷,但两类材料之间的尖锐界面会导致不连续的应力传递和开裂。在此,我们受乌贼喙的启发,通过在具有可控机械性能的高阻尼弹性体中扩散引入刚性聚合物,报告了一种在宽温度范围内具有约三个数量级的大规模模量梯度(模量范围为 7 × 103 ∼ 7 × 106 Pa)和高能量耗散(损耗因子为 0.6)的高抗冲击梯度弹性体。在外力作用下,我们的梯度弹性体表现出软中带硬的特性,兼具缓冲和支撑作用。在落锤冲击测试中,我们的梯度材料可降低 80% 的冲击强度,明显优于商用防护装备。值得一提的是,底层的模量与组织的模量相匹配,可提供更好的保护。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bioinspired stiff–soft gradient network structure for high-performance impact-resistant elastomers

Traditional impact-resistance materials relying on the combination of supporting materials and energy-dissipation elastomers can effectively reduce shock load, yet the sharp interface between two types of materials causes discontinuous stress transfer and cracking. Here, inspired by the squid beak, we report a type of high impact-resistance gradient elastomers with large-scale modulus gradient with about three orders of magnitude (modulus range of 7 × 103 ∼ 7 × 106 Pa) and high energy dissipation (loss factor > 0.6) over a wide temperature range by diffusively introducing stiff polymers in a highly damping elastomer with controlled mechanical properties. Under the action of an external force, our gradient elastomers exhibit soft-while-stiff attributes, combining cushioning and support. In drop hammer impact tests, our gradient materials can reduce impact strength by 80 %, significantly better than commercial protective gear. It is worth mentioning that the modulus of the bottom layer matches that of the tissues for better protection.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
GIANT
GIANT Multiple-
CiteScore
8.50
自引率
8.60%
发文量
46
审稿时长
42 days
期刊介绍: Giant is an interdisciplinary title focusing on fundamental and applied macromolecular science spanning all chemistry, physics, biology, and materials aspects of the field in the broadest sense. Key areas covered include macromolecular chemistry, supramolecular assembly, multiscale and multifunctional materials, organic-inorganic hybrid materials, biophysics, biomimetics and surface science. Core topics range from developments in synthesis, characterisation and assembly towards creating uniformly sized precision macromolecules with tailored properties, to the design and assembly of nanostructured materials in multiple dimensions, and further to the study of smart or living designer materials with tuneable multiscale properties.
期刊最新文献
Influence of activation/deactivation process on surface-initiated atom transfer radical polymerization: An in silico investigation Homochiral “8″-shaped nanotoroids assembled from polypeptides Small dop of comonomer, giant shift of dynamics: α-methyl-regulated viscoelasticity of poly(methacrylamide) hydrogels The effect of dynamic cross-links and mesogenic groups on the swelling and collapse of polymer gels Binary blends of poly(lactic acid) and poly(methyl methacrylate) for high energy density and charge/discharge efficiency capacitors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1