{"title":"探测器特征模拟的深度生成模型:分类综述","authors":"Baran Hashemi , Claudius Krause","doi":"10.1016/j.revip.2024.100092","DOIUrl":null,"url":null,"abstract":"<div><p>In modern collider experiments, the quest to explore fundamental interactions between elementary particles has reached unparalleled levels of precision. Signatures from particle physics detectors are low-level objects (such as energy depositions or tracks) encoding the physics of collisions (the final state particles of hard scattering interactions). The complete simulation of them in a detector is a computational and storage-intensive task. To address this computational bottleneck in particle physics, alternative approaches have been developed, introducing additional assumptions and trade off accuracy for speed. The field has seen a surge in interest in surrogate modeling the detector simulation, fueled by the advancements in deep generative models. These models aim to generate responses that are statistically identical to the observed data. In this paper, we conduct a comprehensive and exhaustive taxonomic review of the existing literature on the simulation of detector signatures from both methodological and application-wise perspectives. Initially, we formulate the problem of detector signature simulation and discuss its different variations that can be unified. Next, we classify the state-of-the-art methods into five distinct categories based on their underlying model architectures, summarizing their respective generation strategies. Finally, we shed light on the challenges and opportunities that lie ahead in detector signature simulation, setting the stage for future research and development.</p></div>","PeriodicalId":37875,"journal":{"name":"Reviews in Physics","volume":"12 ","pages":"Article 100092"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405428324000029/pdfft?md5=6f2aa7f4ae23560a19b65240d46827f9&pid=1-s2.0-S2405428324000029-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Deep generative models for detector signature simulation: A taxonomic review\",\"authors\":\"Baran Hashemi , Claudius Krause\",\"doi\":\"10.1016/j.revip.2024.100092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In modern collider experiments, the quest to explore fundamental interactions between elementary particles has reached unparalleled levels of precision. Signatures from particle physics detectors are low-level objects (such as energy depositions or tracks) encoding the physics of collisions (the final state particles of hard scattering interactions). The complete simulation of them in a detector is a computational and storage-intensive task. To address this computational bottleneck in particle physics, alternative approaches have been developed, introducing additional assumptions and trade off accuracy for speed. The field has seen a surge in interest in surrogate modeling the detector simulation, fueled by the advancements in deep generative models. These models aim to generate responses that are statistically identical to the observed data. In this paper, we conduct a comprehensive and exhaustive taxonomic review of the existing literature on the simulation of detector signatures from both methodological and application-wise perspectives. Initially, we formulate the problem of detector signature simulation and discuss its different variations that can be unified. Next, we classify the state-of-the-art methods into five distinct categories based on their underlying model architectures, summarizing their respective generation strategies. Finally, we shed light on the challenges and opportunities that lie ahead in detector signature simulation, setting the stage for future research and development.</p></div>\",\"PeriodicalId\":37875,\"journal\":{\"name\":\"Reviews in Physics\",\"volume\":\"12 \",\"pages\":\"Article 100092\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2405428324000029/pdfft?md5=6f2aa7f4ae23560a19b65240d46827f9&pid=1-s2.0-S2405428324000029-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reviews in Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405428324000029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Physics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405428324000029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Deep generative models for detector signature simulation: A taxonomic review
In modern collider experiments, the quest to explore fundamental interactions between elementary particles has reached unparalleled levels of precision. Signatures from particle physics detectors are low-level objects (such as energy depositions or tracks) encoding the physics of collisions (the final state particles of hard scattering interactions). The complete simulation of them in a detector is a computational and storage-intensive task. To address this computational bottleneck in particle physics, alternative approaches have been developed, introducing additional assumptions and trade off accuracy for speed. The field has seen a surge in interest in surrogate modeling the detector simulation, fueled by the advancements in deep generative models. These models aim to generate responses that are statistically identical to the observed data. In this paper, we conduct a comprehensive and exhaustive taxonomic review of the existing literature on the simulation of detector signatures from both methodological and application-wise perspectives. Initially, we formulate the problem of detector signature simulation and discuss its different variations that can be unified. Next, we classify the state-of-the-art methods into five distinct categories based on their underlying model architectures, summarizing their respective generation strategies. Finally, we shed light on the challenges and opportunities that lie ahead in detector signature simulation, setting the stage for future research and development.
期刊介绍:
Reviews in Physics is a gold open access Journal, publishing review papers on topics in all areas of (applied) physics. The journal provides a platform for researchers who wish to summarize a field of physics research and share this work as widely as possible. The published papers provide an overview of the main developments on a particular topic, with an emphasis on recent developments, and sketch an outlook on future developments. The journal focuses on short review papers (max 15 pages) and these are freely available after publication. All submitted manuscripts are fully peer-reviewed and after acceptance a publication fee is charged to cover all editorial, production, and archiving costs.