WBSP:利用工作繁忙同步并行技术解决分布式机器学习中的落后问题

IF 2 4区 计算机科学 Q2 COMPUTER SCIENCE, THEORY & METHODS Parallel Computing Pub Date : 2024-06-29 DOI:10.1016/j.parco.2024.103092
Duo Yang , Bing Hu , An Liu , A-Long Jin , Kwan L. Yeung , Yang You
{"title":"WBSP:利用工作繁忙同步并行技术解决分布式机器学习中的落后问题","authors":"Duo Yang ,&nbsp;Bing Hu ,&nbsp;An Liu ,&nbsp;A-Long Jin ,&nbsp;Kwan L. Yeung ,&nbsp;Yang You","doi":"10.1016/j.parco.2024.103092","DOIUrl":null,"url":null,"abstract":"<div><p>Parameter server is widely used in distributed machine learning to accelerate training. However, the increasing heterogeneity of workers’ computing capabilities leads to the issue of stragglers, making parameter synchronization challenging. To address this issue, we propose a solution called Worker-Busy Synchronous Parallel (WBSP). This approach eliminates the waiting time of fast workers during the synchronization process and decouples the gradient upload and model download of fast workers into asymmetric parts. By doing so, it allows fast workers to complete multiple steps of local training and upload more gradients to the server, improving computational resource utilization. Additionally, the global model is only updated when the slowest worker uploads the gradients, ensuring the consistency of global models that are pulled down by all workers and the convergence of the global model. Building upon WBSP, we propose an optimized version to further reduce the communication overhead. It enables parallel execution of communication and computation tasks on workers to shorten the global synchronization interval, thereby improving training speed. We conduct theoretical analyses for the proposed mechanisms. Extensive experiments verify that our mechanism can reduce the required time to achieve the target accuracy by up to 60% compared with the fastest method and increase the proportion of computation time from 55%–72% in existing methods to 91%.</p></div>","PeriodicalId":54642,"journal":{"name":"Parallel Computing","volume":"121 ","pages":"Article 103092"},"PeriodicalIF":2.0000,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"WBSP: Addressing stragglers in distributed machine learning with worker-busy synchronous parallel\",\"authors\":\"Duo Yang ,&nbsp;Bing Hu ,&nbsp;An Liu ,&nbsp;A-Long Jin ,&nbsp;Kwan L. Yeung ,&nbsp;Yang You\",\"doi\":\"10.1016/j.parco.2024.103092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Parameter server is widely used in distributed machine learning to accelerate training. However, the increasing heterogeneity of workers’ computing capabilities leads to the issue of stragglers, making parameter synchronization challenging. To address this issue, we propose a solution called Worker-Busy Synchronous Parallel (WBSP). This approach eliminates the waiting time of fast workers during the synchronization process and decouples the gradient upload and model download of fast workers into asymmetric parts. By doing so, it allows fast workers to complete multiple steps of local training and upload more gradients to the server, improving computational resource utilization. Additionally, the global model is only updated when the slowest worker uploads the gradients, ensuring the consistency of global models that are pulled down by all workers and the convergence of the global model. Building upon WBSP, we propose an optimized version to further reduce the communication overhead. It enables parallel execution of communication and computation tasks on workers to shorten the global synchronization interval, thereby improving training speed. We conduct theoretical analyses for the proposed mechanisms. Extensive experiments verify that our mechanism can reduce the required time to achieve the target accuracy by up to 60% compared with the fastest method and increase the proportion of computation time from 55%–72% in existing methods to 91%.</p></div>\",\"PeriodicalId\":54642,\"journal\":{\"name\":\"Parallel Computing\",\"volume\":\"121 \",\"pages\":\"Article 103092\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Parallel Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167819124000309\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parallel Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167819124000309","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

参数服务器广泛应用于分布式机器学习,以加速训练。然而,由于工人计算能力的异质性越来越大,导致了散兵游勇的问题,使参数同步变得非常具有挑战性。为了解决这个问题,我们提出了一种名为 "工作繁忙同步并行"(WBSP)的解决方案。这种方法消除了快速工作者在同步过程中的等待时间,并将快速工作者的梯度上传和模型下载分离为非对称部分。这样,快速工作者就能完成多步本地训练,并向服务器上传更多梯度,从而提高计算资源利用率。此外,只有当速度最慢的工作者上传梯度时,才会更新全局模型,从而确保所有工作者下拉的全局模型的一致性和全局模型的收敛性。在 WBSP 的基础上,我们提出了一个优化版本,以进一步减少通信开销。它可以在 Worker 上并行执行通信和计算任务,缩短全局同步间隔,从而提高训练速度。我们对提出的机制进行了理论分析。大量实验验证,与最快的方法相比,我们的机制可以将达到目标精度所需的时间减少 60%,并将计算时间的比例从现有方法的 55%-72% 提高到 91%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
WBSP: Addressing stragglers in distributed machine learning with worker-busy synchronous parallel

Parameter server is widely used in distributed machine learning to accelerate training. However, the increasing heterogeneity of workers’ computing capabilities leads to the issue of stragglers, making parameter synchronization challenging. To address this issue, we propose a solution called Worker-Busy Synchronous Parallel (WBSP). This approach eliminates the waiting time of fast workers during the synchronization process and decouples the gradient upload and model download of fast workers into asymmetric parts. By doing so, it allows fast workers to complete multiple steps of local training and upload more gradients to the server, improving computational resource utilization. Additionally, the global model is only updated when the slowest worker uploads the gradients, ensuring the consistency of global models that are pulled down by all workers and the convergence of the global model. Building upon WBSP, we propose an optimized version to further reduce the communication overhead. It enables parallel execution of communication and computation tasks on workers to shorten the global synchronization interval, thereby improving training speed. We conduct theoretical analyses for the proposed mechanisms. Extensive experiments verify that our mechanism can reduce the required time to achieve the target accuracy by up to 60% compared with the fastest method and increase the proportion of computation time from 55%–72% in existing methods to 91%.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Parallel Computing
Parallel Computing 工程技术-计算机:理论方法
CiteScore
3.50
自引率
7.10%
发文量
49
审稿时长
4.5 months
期刊介绍: Parallel Computing is an international journal presenting the practical use of parallel computer systems, including high performance architecture, system software, programming systems and tools, and applications. Within this context the journal covers all aspects of high-end parallel computing from single homogeneous or heterogenous computing nodes to large-scale multi-node systems. Parallel Computing features original research work and review articles as well as novel or illustrative accounts of application experience with (and techniques for) the use of parallel computers. We also welcome studies reproducing prior publications that either confirm or disprove prior published results. Particular technical areas of interest include, but are not limited to: -System software for parallel computer systems including programming languages (new languages as well as compilation techniques), operating systems (including middleware), and resource management (scheduling and load-balancing). -Enabling software including debuggers, performance tools, and system and numeric libraries. -General hardware (architecture) concepts, new technologies enabling the realization of such new concepts, and details of commercially available systems -Software engineering and productivity as it relates to parallel computing -Applications (including scientific computing, deep learning, machine learning) or tool case studies demonstrating novel ways to achieve parallelism -Performance measurement results on state-of-the-art systems -Approaches to effectively utilize large-scale parallel computing including new algorithms or algorithm analysis with demonstrated relevance to real applications using existing or next generation parallel computer architectures. -Parallel I/O systems both hardware and software -Networking technology for support of high-speed computing demonstrating the impact of high-speed computation on parallel applications
期刊最新文献
Towards resilient and energy efficient scalable Krylov solvers Seesaw: A 4096-bit vector processor for accelerating Kyber based on RISC-V ISA extensions Editorial Board FastPTM: Fast weights loading of pre-trained models for parallel inference service provisioning Distributed consensus-based estimation of the leading eigenvalue of a non-negative irreducible matrix
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1