基于深度学习的癫痫发作检测中的脑电信号通道交换

IF 0.7 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Electronics Letters Pub Date : 2024-07-12 DOI:10.1049/ell2.13276
Yayan Pan, Fangying Dong, Wei Yao, Xiaoqin Meng, Yongan Xu
{"title":"基于深度学习的癫痫发作检测中的脑电信号通道交换","authors":"Yayan Pan,&nbsp;Fangying Dong,&nbsp;Wei Yao,&nbsp;Xiaoqin Meng,&nbsp;Yongan Xu","doi":"10.1049/ell2.13276","DOIUrl":null,"url":null,"abstract":"<p>The purpose of epilepsy detection is to determine whether epilepsy has occurred by analysing the patient's electroencephalogram (EEG) signals. Compared to traditional methods, epilepsy detection methods based on deep learning have achieved significant improvements in detection accuracy. However, when the number of training samples is limited, the model's detection performance often significantly declines. To address this issue, here a sample enhancement method based on electroencephalogram signal channel swapping is proposed. This method generates new electroencephalogram samples by exchanging electroencephalogram sequences from different channels, thereby expanding the training set and improving epilepsy detection accuracy in few-shot scenarios. Experiments using the Children's Hospital Boston and the Massachusetts Institute of Technology (CHB-MIT) dataset show that for training sets with 100, 500, and 1000 samples, detection accuracy improves from 0.6797 to 0.7789, 0.6952 to 0.8210, and 0.7273 to 0.8517, respectively. Compared to the sliding window method, the proposed method demonstrates higher accuracy in extreme low sample sizes. Combining both methods can further enhances detection performance, showing an improvement of approximately 8% across various configurations.</p>","PeriodicalId":11556,"journal":{"name":"Electronics Letters","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/ell2.13276","citationCount":"0","resultStr":"{\"title\":\"Channel swapping of EEG signals for deep learning-based seizure detection\",\"authors\":\"Yayan Pan,&nbsp;Fangying Dong,&nbsp;Wei Yao,&nbsp;Xiaoqin Meng,&nbsp;Yongan Xu\",\"doi\":\"10.1049/ell2.13276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The purpose of epilepsy detection is to determine whether epilepsy has occurred by analysing the patient's electroencephalogram (EEG) signals. Compared to traditional methods, epilepsy detection methods based on deep learning have achieved significant improvements in detection accuracy. However, when the number of training samples is limited, the model's detection performance often significantly declines. To address this issue, here a sample enhancement method based on electroencephalogram signal channel swapping is proposed. This method generates new electroencephalogram samples by exchanging electroencephalogram sequences from different channels, thereby expanding the training set and improving epilepsy detection accuracy in few-shot scenarios. Experiments using the Children's Hospital Boston and the Massachusetts Institute of Technology (CHB-MIT) dataset show that for training sets with 100, 500, and 1000 samples, detection accuracy improves from 0.6797 to 0.7789, 0.6952 to 0.8210, and 0.7273 to 0.8517, respectively. Compared to the sliding window method, the proposed method demonstrates higher accuracy in extreme low sample sizes. Combining both methods can further enhances detection performance, showing an improvement of approximately 8% across various configurations.</p>\",\"PeriodicalId\":11556,\"journal\":{\"name\":\"Electronics Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/ell2.13276\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronics Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/ell2.13276\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronics Letters","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/ell2.13276","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

癫痫检测的目的是通过分析患者的脑电图(EEG)信号来确定是否发生了癫痫。与传统方法相比,基于深度学习的癫痫检测方法在检测准确率方面取得了显著提高。然而,当训练样本数量有限时,模型的检测性能往往会明显下降。针对这一问题,本文提出了一种基于脑电信号通道交换的样本增强方法。该方法通过交换来自不同通道的脑电图序列来生成新的脑电图样本,从而扩大训练集,提高在少镜头场景下的癫痫检测准确率。使用波士顿儿童医院和麻省理工学院(CHB-MIT)数据集进行的实验表明,对于 100、500 和 1000 个样本的训练集,检测准确率分别从 0.6797 提高到 0.7789、0.6952 提高到 0.8210 和 0.7273 提高到 0.8517。与滑动窗口法相比,建议的方法在样本量极低的情况下表现出更高的准确性。将这两种方法结合使用可进一步提高检测性能,在不同配置下可提高约 8%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Channel swapping of EEG signals for deep learning-based seizure detection

The purpose of epilepsy detection is to determine whether epilepsy has occurred by analysing the patient's electroencephalogram (EEG) signals. Compared to traditional methods, epilepsy detection methods based on deep learning have achieved significant improvements in detection accuracy. However, when the number of training samples is limited, the model's detection performance often significantly declines. To address this issue, here a sample enhancement method based on electroencephalogram signal channel swapping is proposed. This method generates new electroencephalogram samples by exchanging electroencephalogram sequences from different channels, thereby expanding the training set and improving epilepsy detection accuracy in few-shot scenarios. Experiments using the Children's Hospital Boston and the Massachusetts Institute of Technology (CHB-MIT) dataset show that for training sets with 100, 500, and 1000 samples, detection accuracy improves from 0.6797 to 0.7789, 0.6952 to 0.8210, and 0.7273 to 0.8517, respectively. Compared to the sliding window method, the proposed method demonstrates higher accuracy in extreme low sample sizes. Combining both methods can further enhances detection performance, showing an improvement of approximately 8% across various configurations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electronics Letters
Electronics Letters 工程技术-工程:电子与电气
CiteScore
2.70
自引率
0.00%
发文量
268
审稿时长
3.6 months
期刊介绍: Electronics Letters is an internationally renowned peer-reviewed rapid-communication journal that publishes short original research papers every two weeks. Its broad and interdisciplinary scope covers the latest developments in all electronic engineering related fields including communication, biomedical, optical and device technologies. Electronics Letters also provides further insight into some of the latest developments through special features and interviews. Scope As a journal at the forefront of its field, Electronics Letters publishes papers covering all themes of electronic and electrical engineering. The major themes of the journal are listed below. Antennas and Propagation Biomedical and Bioinspired Technologies, Signal Processing and Applications Control Engineering Electromagnetism: Theory, Materials and Devices Electronic Circuits and Systems Image, Video and Vision Processing and Applications Information, Computing and Communications Instrumentation and Measurement Microwave Technology Optical Communications Photonics and Opto-Electronics Power Electronics, Energy and Sustainability Radar, Sonar and Navigation Semiconductor Technology Signal Processing MIMO
期刊最新文献
U-ONet: Remote sensing image semantic labelling based on octave convolution and coordination attention in U-shape deep neural network Active learning for efficient data selection in radio-signal-based positioning via deep learning Decoding microwave modulation transfer: The impact of dissipation through stochastic processes End-to-end speech-denoising deep neural network based on residual-attention gated linear units Dynamic pricing-based integration for non-cooperative ubiquitous sensing and communication network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1