微机器人在血液中受到的阻力

IF 5.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Communications Physics Pub Date : 2024-07-13 DOI:10.1038/s42005-024-01724-4
Chenjun Wu, Toshihiro Omori, Takuji Ishikawa
{"title":"微机器人在血液中受到的阻力","authors":"Chenjun Wu, Toshihiro Omori, Takuji Ishikawa","doi":"10.1038/s42005-024-01724-4","DOIUrl":null,"url":null,"abstract":"Controlling microrobot locomotion in vessels and capillaries is crucial for precise drug delivery and minimally invasive surgeries. However, this is challenging due to the complex interactions with red blood cells (RBCs) and the difficulty navigating within the dense environment. Here, we construct a numerical framework to evaluate the relative resistance coefficient ( $${C}_{{{{{{{{\\rm{r}}}}}}}}}^{* }$$ ) of a microrobot propelled through RBC suspensions. Our experiments validate the numerical results. We find that $${C}_{{{{{{{{\\rm{r}}}}}}}}}^{* }$$ increases for smaller microrobots and higher hematocrit levels, while magnetic force strength weakly impacts $${C}_{{{{{{{{\\rm{r}}}}}}}}}^{* }$$ . $${C}_{{{{{{{{\\rm{r}}}}}}}}}^{* }$$ is smaller than the resistance coefficient of a macroscale robot estimated from the apparent viscosity of the RBC suspension. The aspect ratio of a prolate ellipsoidal microrobot influences $${C}_{{{{{{{{\\rm{r}}}}}}}}}^{* }$$ along its long-axis direction. Additionally, machine learning accurately predicts $${C}_{{{{{{{{\\rm{r}}}}}}}}}^{* }$$ . These insights could enhance the design and control of microrobots for medical applications. Controlling microrobot movement in blood vessels is vital for medical treatments but is challenging due to red blood cells. This study combines simulations, experiments, and machine learning to demonstrate how hematocrit levels and robot geometry affect its locomotion characteristics in blood","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01724-4.pdf","citationCount":"0","resultStr":"{\"title\":\"Drag force on a microrobot propelled through blood\",\"authors\":\"Chenjun Wu, Toshihiro Omori, Takuji Ishikawa\",\"doi\":\"10.1038/s42005-024-01724-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Controlling microrobot locomotion in vessels and capillaries is crucial for precise drug delivery and minimally invasive surgeries. However, this is challenging due to the complex interactions with red blood cells (RBCs) and the difficulty navigating within the dense environment. Here, we construct a numerical framework to evaluate the relative resistance coefficient ( $${C}_{{{{{{{{\\\\rm{r}}}}}}}}}^{* }$$ ) of a microrobot propelled through RBC suspensions. Our experiments validate the numerical results. We find that $${C}_{{{{{{{{\\\\rm{r}}}}}}}}}^{* }$$ increases for smaller microrobots and higher hematocrit levels, while magnetic force strength weakly impacts $${C}_{{{{{{{{\\\\rm{r}}}}}}}}}^{* }$$ . $${C}_{{{{{{{{\\\\rm{r}}}}}}}}}^{* }$$ is smaller than the resistance coefficient of a macroscale robot estimated from the apparent viscosity of the RBC suspension. The aspect ratio of a prolate ellipsoidal microrobot influences $${C}_{{{{{{{{\\\\rm{r}}}}}}}}}^{* }$$ along its long-axis direction. Additionally, machine learning accurately predicts $${C}_{{{{{{{{\\\\rm{r}}}}}}}}}^{* }$$ . These insights could enhance the design and control of microrobots for medical applications. Controlling microrobot movement in blood vessels is vital for medical treatments but is challenging due to red blood cells. This study combines simulations, experiments, and machine learning to demonstrate how hematocrit levels and robot geometry affect its locomotion characteristics in blood\",\"PeriodicalId\":10540,\"journal\":{\"name\":\"Communications Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s42005-024-01724-4.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.nature.com/articles/s42005-024-01724-4\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s42005-024-01724-4","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

控制微型机器人在血管和毛细血管中的运动对于精确给药和微创手术至关重要。然而,由于与红细胞(RBC)之间复杂的相互作用以及在高密度环境中航行的困难,这项工作极具挑战性。在此,我们构建了一个数值框架来评估微机器人在红细胞悬浮液中推进时的相对阻力系数($${C}_{{{{{{{{/rm{r}}}}}}}}}^{* }$$)。我们的实验验证了数值结果。我们发现,当微型机器人越小、血细胞比容越高时,$${C}_{{{{{{{{\rm{r}}}}}}}}}^{* }$$会增加,而磁力强度对$${C}_{{{{{{{{\rm{r}}}}}}}}}^{* }$$的影响较弱。$${C}_{{{{{{{{\rm{r}}}}}}}}}^{* }$$小于根据红细胞悬浮液表观粘度估算的大尺度机器人的阻力系数。长椭圆形微型机器人的长宽比会影响其长轴方向上的 ${C}_{{{{{{{{\rm{r}}}}}}}}}^{* }$$。此外,机器学习能准确预测 ${C}_{{{{{{{{\rm{r}}}}}}}}}^{* }$ 。这些见解可以提高医疗应用中微型机器人的设计和控制水平。控制微机器人在血管中的运动对医疗至关重要,但由于红细胞的存在,控制微机器人在血管中的运动具有挑战性。本研究结合模拟、实验和机器学习,展示了血细胞比容水平和机器人几何形状如何影响其在血液中的运动特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Drag force on a microrobot propelled through blood
Controlling microrobot locomotion in vessels and capillaries is crucial for precise drug delivery and minimally invasive surgeries. However, this is challenging due to the complex interactions with red blood cells (RBCs) and the difficulty navigating within the dense environment. Here, we construct a numerical framework to evaluate the relative resistance coefficient ( $${C}_{{{{{{{{\rm{r}}}}}}}}}^{* }$$ ) of a microrobot propelled through RBC suspensions. Our experiments validate the numerical results. We find that $${C}_{{{{{{{{\rm{r}}}}}}}}}^{* }$$ increases for smaller microrobots and higher hematocrit levels, while magnetic force strength weakly impacts $${C}_{{{{{{{{\rm{r}}}}}}}}}^{* }$$ . $${C}_{{{{{{{{\rm{r}}}}}}}}}^{* }$$ is smaller than the resistance coefficient of a macroscale robot estimated from the apparent viscosity of the RBC suspension. The aspect ratio of a prolate ellipsoidal microrobot influences $${C}_{{{{{{{{\rm{r}}}}}}}}}^{* }$$ along its long-axis direction. Additionally, machine learning accurately predicts $${C}_{{{{{{{{\rm{r}}}}}}}}}^{* }$$ . These insights could enhance the design and control of microrobots for medical applications. Controlling microrobot movement in blood vessels is vital for medical treatments but is challenging due to red blood cells. This study combines simulations, experiments, and machine learning to demonstrate how hematocrit levels and robot geometry affect its locomotion characteristics in blood
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications Physics
Communications Physics Physics and Astronomy-General Physics and Astronomy
CiteScore
8.40
自引率
3.60%
发文量
276
审稿时长
13 weeks
期刊介绍: Communications Physics is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the physical sciences. Research papers published by the journal represent significant advances bringing new insight to a specialized area of research in physics. We also aim to provide a community forum for issues of importance to all physicists, regardless of sub-discipline. The scope of the journal covers all areas of experimental, applied, fundamental, and interdisciplinary physical sciences. Primary research published in Communications Physics includes novel experimental results, new techniques or computational methods that may influence the work of others in the sub-discipline. We also consider submissions from adjacent research fields where the central advance of the study is of interest to physicists, for example material sciences, physical chemistry and technologies.
期刊最新文献
Measurement of coherent vibrational dynamics with X-ray Transient Absorption Spectroscopy simultaneously at the Carbon K- and Chlorine L2,3- edges Design of a monolithic silicon-on-insulator resonator spiking neuron Inference through innovation processes tested in the authorship attribution task Transport of topological defects in a biphasic mixture of active and passive nematic fluids Readout error mitigated quantum state tomography tested on superconducting qubits
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1