SsL-VGMM:用于岩性预测的多源数据融合半监督机器学习模型

IF 4.8 2区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Natural Resources Research Pub Date : 2024-07-13 DOI:10.1007/s11053-024-10375-9
Pengfei Lv, Weiying Chen, Hai Li, Wangting Song
{"title":"SsL-VGMM:用于岩性预测的多源数据融合半监督机器学习模型","authors":"Pengfei Lv, Weiying Chen, Hai Li, Wangting Song","doi":"10.1007/s11053-024-10375-9","DOIUrl":null,"url":null,"abstract":"<p>In deep mineral exploration, it is difficult to constrain the complex geological structures using a single geophysical method. To tackle the difficulty, integrated geophysical surveys and joint data interpretation are essential. Machine learning (ML) provides more accurate predictions than traditional methods, especially when dealing with complex data from multiple sources or varied statistical distributions. However, a major challenge in using ML for deep mineral exploration is the scarcity and imbalance of labeled samples, mainly due to budget constraints and the complexity of ore deposits. This issue reduces the accuracy of predictive models and introduces bias. Additionally, limited labeling can lead to difficulties in predicting previously undefined classes in training datasets. To address these challenges, we introduce a robust semisupervised ML framework that integrates diverse geophysical and geological datasets to improve model reliability with limited labeled data. Our approach uses a semisupervised ML variational Gaussian mixture model (SsL-VGMM) to handle issues related to insufficient and imbalanced data. We enhanced the model’s predictive capability for unseen data by introducing a novel penalty factor in the ‘cannot-link’ function. Moreover, we employed Bayesian optimization, focusing on the mean-mixture weight, to avoid local optima during model training. Our model demonstrated high accuracy and efficiency, with classification and prediction accuracies of 95.33% and 87.4%, respectively, in numerical and electromagnetic simulation scenarios. Its effectiveness was further validated by locating Pb–Zn–Ag deposits in Inner Mongolia, supported by actual drilling data. This paper highlights the model’s potential in complex mineral exploration and its significant practical and innovative value for deep mineral exploration.</p>","PeriodicalId":54284,"journal":{"name":"Natural Resources Research","volume":"38 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SsL-VGMM: A Semisupervised Machine Learning Model of Multisource Data Fusion for Lithology Prediction\",\"authors\":\"Pengfei Lv, Weiying Chen, Hai Li, Wangting Song\",\"doi\":\"10.1007/s11053-024-10375-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In deep mineral exploration, it is difficult to constrain the complex geological structures using a single geophysical method. To tackle the difficulty, integrated geophysical surveys and joint data interpretation are essential. Machine learning (ML) provides more accurate predictions than traditional methods, especially when dealing with complex data from multiple sources or varied statistical distributions. However, a major challenge in using ML for deep mineral exploration is the scarcity and imbalance of labeled samples, mainly due to budget constraints and the complexity of ore deposits. This issue reduces the accuracy of predictive models and introduces bias. Additionally, limited labeling can lead to difficulties in predicting previously undefined classes in training datasets. To address these challenges, we introduce a robust semisupervised ML framework that integrates diverse geophysical and geological datasets to improve model reliability with limited labeled data. Our approach uses a semisupervised ML variational Gaussian mixture model (SsL-VGMM) to handle issues related to insufficient and imbalanced data. We enhanced the model’s predictive capability for unseen data by introducing a novel penalty factor in the ‘cannot-link’ function. Moreover, we employed Bayesian optimization, focusing on the mean-mixture weight, to avoid local optima during model training. Our model demonstrated high accuracy and efficiency, with classification and prediction accuracies of 95.33% and 87.4%, respectively, in numerical and electromagnetic simulation scenarios. Its effectiveness was further validated by locating Pb–Zn–Ag deposits in Inner Mongolia, supported by actual drilling data. This paper highlights the model’s potential in complex mineral exploration and its significant practical and innovative value for deep mineral exploration.</p>\",\"PeriodicalId\":54284,\"journal\":{\"name\":\"Natural Resources Research\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Natural Resources Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s11053-024-10375-9\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Resources Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s11053-024-10375-9","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在深部矿产勘探中,使用单一地球物理方法很难确定复杂的地质结构。要解决这一难题,必须进行综合地球物理勘测和联合数据解释。与传统方法相比,机器学习(ML)能提供更准确的预测,尤其是在处理来自多个来源或不同统计分布的复杂数据时。然而,将 ML 用于深部矿产勘探的一个主要挑战是标记样本的稀缺性和不平衡性,这主要是由于预算限制和矿床的复杂性造成的。这一问题会降低预测模型的准确性,并带来偏差。此外,有限的标注会导致难以预测训练数据集中以前未定义的类别。为了应对这些挑战,我们引入了一个稳健的半监督 ML 框架,该框架整合了各种地球物理和地质数据集,以提高有限标记数据模型的可靠性。我们的方法使用半监督 ML 变异高斯混合模型(SsL-VGMM)来处理与数据不足和不平衡相关的问题。我们在 "不能链接 "函数中引入了一个新的惩罚因子,从而增强了模型对未知数据的预测能力。此外,我们还采用了贝叶斯优化方法,重点关注平均混合权重,以避免在模型训练过程中出现局部最优。我们的模型具有很高的准确性和效率,在数值模拟和电磁模拟场景中,分类准确率和预测准确率分别达到 95.33% 和 87.4%。在实际钻探数据的支持下,通过对内蒙古铅锌银矿床的定位,进一步验证了该模型的有效性。本文强调了该模型在复杂矿产勘探中的潜力及其在深部矿产勘探中的重要实用价值和创新价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SsL-VGMM: A Semisupervised Machine Learning Model of Multisource Data Fusion for Lithology Prediction

In deep mineral exploration, it is difficult to constrain the complex geological structures using a single geophysical method. To tackle the difficulty, integrated geophysical surveys and joint data interpretation are essential. Machine learning (ML) provides more accurate predictions than traditional methods, especially when dealing with complex data from multiple sources or varied statistical distributions. However, a major challenge in using ML for deep mineral exploration is the scarcity and imbalance of labeled samples, mainly due to budget constraints and the complexity of ore deposits. This issue reduces the accuracy of predictive models and introduces bias. Additionally, limited labeling can lead to difficulties in predicting previously undefined classes in training datasets. To address these challenges, we introduce a robust semisupervised ML framework that integrates diverse geophysical and geological datasets to improve model reliability with limited labeled data. Our approach uses a semisupervised ML variational Gaussian mixture model (SsL-VGMM) to handle issues related to insufficient and imbalanced data. We enhanced the model’s predictive capability for unseen data by introducing a novel penalty factor in the ‘cannot-link’ function. Moreover, we employed Bayesian optimization, focusing on the mean-mixture weight, to avoid local optima during model training. Our model demonstrated high accuracy and efficiency, with classification and prediction accuracies of 95.33% and 87.4%, respectively, in numerical and electromagnetic simulation scenarios. Its effectiveness was further validated by locating Pb–Zn–Ag deposits in Inner Mongolia, supported by actual drilling data. This paper highlights the model’s potential in complex mineral exploration and its significant practical and innovative value for deep mineral exploration.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Natural Resources Research
Natural Resources Research Environmental Science-General Environmental Science
CiteScore
11.90
自引率
11.10%
发文量
151
期刊介绍: This journal publishes quantitative studies of natural (mainly but not limited to mineral) resources exploration, evaluation and exploitation, including environmental and risk-related aspects. Typical articles use geoscientific data or analyses to assess, test, or compare resource-related aspects. NRR covers a wide variety of resources including minerals, coal, hydrocarbon, geothermal, water, and vegetation. Case studies are welcome.
期刊最新文献
Petrophysical Characteristics of the Paleocene Zelten Formation in the Gialo Oil Field, Sirte Basin, Libya Research on Coal Reservoir Pore Structures: Progress, Current Status, and Advancing Lateritic Ni–Co Prospectivity Modeling in Eastern Australia Using an Enhanced Generative Adversarial Network and Positive-Unlabeled Bagging Risk-Based Optimization of Post-Blast Dig-Limits Incorporating Blast Movement and Grade Uncertainties with Multiple Destinations in Open-Pit Mines Correlation Between and Mechanisms of Gas Desorption and Infrasound Signals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1