{"title":"自我监督学习在胚胎选择中的潜力,促进试管婴儿的成功","authors":"Guanqiao Shan, Yu Sun","doi":"10.1016/j.patter.2024.101012","DOIUrl":null,"url":null,"abstract":"<p>How to select the “best” embryo for transfer is a long-standing question in clinical <em>in vitro</em> fertilization (IVF). Wang et al. proposed a multi-modal self-supervised learning framework for human embryo selection with a high accuracy and generalization ability.</p>","PeriodicalId":36242,"journal":{"name":"Patterns","volume":null,"pages":null},"PeriodicalIF":6.7000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The potential of self- supervised learning in embryo selection for IVF success\",\"authors\":\"Guanqiao Shan, Yu Sun\",\"doi\":\"10.1016/j.patter.2024.101012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>How to select the “best” embryo for transfer is a long-standing question in clinical <em>in vitro</em> fertilization (IVF). Wang et al. proposed a multi-modal self-supervised learning framework for human embryo selection with a high accuracy and generalization ability.</p>\",\"PeriodicalId\":36242,\"journal\":{\"name\":\"Patterns\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Patterns\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.patter.2024.101012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Patterns","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.patter.2024.101012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
The potential of self- supervised learning in embryo selection for IVF success
How to select the “best” embryo for transfer is a long-standing question in clinical in vitro fertilization (IVF). Wang et al. proposed a multi-modal self-supervised learning framework for human embryo selection with a high accuracy and generalization ability.