Cetraria islandica 地衣黑色化苔藓的形态、生理和生化特征

IF 1.1 4区 生物学 Q3 PLANT SCIENCES Russian Journal of Plant Physiology Pub Date : 2024-07-13 DOI:10.1134/s1021443724606104
A. G. Daminova, E. I. Galeeva, D. F. Rakhmatullina, L. V. Viktorova, F. V. Minibayeva
{"title":"Cetraria islandica 地衣黑色化苔藓的形态、生理和生化特征","authors":"A. G. Daminova, E. I. Galeeva, D. F. Rakhmatullina, L. V. Viktorova, F. V. Minibayeva","doi":"10.1134/s1021443724606104","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Lichens are extremophilic symbiotic associations possessing phenomenal resistance to abiotic stress-factors. In this regard, melanization of thalli in response to UV is one of the mechanisms protecting lichens from excessive insolation. However, microstructure and biochemical properties of the melanized thalli are still poorly investigated. In the present study, morphological, nanomechanical, and physiological, and biochemical traits of naturally melanized thalli of the <i>Cetraria islandica</i> (L.) Ach. lichen were examined. In the upper cortex of its thallus, the nature of the pigment layer was verified using typical qualitative reactions for melanins. It was found that melanization leads to changes in microstructure of the upper cortex of the mycobiont, in particular, thickening of the cell walls and extension of the interhyphal space. The melanized and pale (nonmelanized) thalli were found to differ from each other in their nanomechanical properties, including the parameters of adhesion and rigidity. This implies the possible formation of complex associates of melanin with cell wall components in the melanized mycobiont. In addition, higher antioxidant activity and lower respiratory activity were found in the melanized thalli of <i>C. islandica</i> in comparison with the pale thalli. Presumably, the found modifications in the microstructure and nanomechanical, physiological, and biochemical properties of thalli occurring in the course of melanization make lichens more resistant to intense insolation.</p>","PeriodicalId":21477,"journal":{"name":"Russian Journal of Plant Physiology","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Morphological, Physiological, and Biochemical Traits of Melanized Thallus of the Cetraria islandica Lichen\",\"authors\":\"A. G. Daminova, E. I. Galeeva, D. F. Rakhmatullina, L. V. Viktorova, F. V. Minibayeva\",\"doi\":\"10.1134/s1021443724606104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>Lichens are extremophilic symbiotic associations possessing phenomenal resistance to abiotic stress-factors. In this regard, melanization of thalli in response to UV is one of the mechanisms protecting lichens from excessive insolation. However, microstructure and biochemical properties of the melanized thalli are still poorly investigated. In the present study, morphological, nanomechanical, and physiological, and biochemical traits of naturally melanized thalli of the <i>Cetraria islandica</i> (L.) Ach. lichen were examined. In the upper cortex of its thallus, the nature of the pigment layer was verified using typical qualitative reactions for melanins. It was found that melanization leads to changes in microstructure of the upper cortex of the mycobiont, in particular, thickening of the cell walls and extension of the interhyphal space. The melanized and pale (nonmelanized) thalli were found to differ from each other in their nanomechanical properties, including the parameters of adhesion and rigidity. This implies the possible formation of complex associates of melanin with cell wall components in the melanized mycobiont. In addition, higher antioxidant activity and lower respiratory activity were found in the melanized thalli of <i>C. islandica</i> in comparison with the pale thalli. Presumably, the found modifications in the microstructure and nanomechanical, physiological, and biochemical properties of thalli occurring in the course of melanization make lichens more resistant to intense insolation.</p>\",\"PeriodicalId\":21477,\"journal\":{\"name\":\"Russian Journal of Plant Physiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Journal of Plant Physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1134/s1021443724606104\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Plant Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1134/s1021443724606104","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

摘要地衣是一种极端嗜生物的共生结合体,对非生物胁迫因素具有惊人的抵抗力。在这方面,苔藓对紫外线的黑色化是保护地衣免受过度日照的机制之一。然而,对黑色化苔藓的微观结构和生化特性的研究仍然很少。本研究考察了 Cetraria islandica (L.) Ach.地衣自然黑色化苔藓的形态、纳米力学、生理和生化特征。利用黑色素的典型定性反应验证了其苔藓上部皮层色素层的性质。研究发现,黑色素化会导致霉菌上部皮层的微观结构发生变化,特别是细胞壁增厚和茎间隙扩大。研究发现,黑化和苍白(非黑化)的菌丝在纳米机械特性(包括粘附性和刚性参数)方面存在差异。这意味着黑色素可能与黑色素化霉菌的细胞壁成分形成复杂的结合体。此外,与苍白的菌柄相比,黑色化的岛蝽菌柄具有更高的抗氧化活性和更低的呼吸活性。据推测,在黑色化过程中发现的苔藓微观结构和纳米力学、生理和生化特性的改变,使地衣更能抵抗强烈的日照。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Morphological, Physiological, and Biochemical Traits of Melanized Thallus of the Cetraria islandica Lichen

Abstract

Lichens are extremophilic symbiotic associations possessing phenomenal resistance to abiotic stress-factors. In this regard, melanization of thalli in response to UV is one of the mechanisms protecting lichens from excessive insolation. However, microstructure and biochemical properties of the melanized thalli are still poorly investigated. In the present study, morphological, nanomechanical, and physiological, and biochemical traits of naturally melanized thalli of the Cetraria islandica (L.) Ach. lichen were examined. In the upper cortex of its thallus, the nature of the pigment layer was verified using typical qualitative reactions for melanins. It was found that melanization leads to changes in microstructure of the upper cortex of the mycobiont, in particular, thickening of the cell walls and extension of the interhyphal space. The melanized and pale (nonmelanized) thalli were found to differ from each other in their nanomechanical properties, including the parameters of adhesion and rigidity. This implies the possible formation of complex associates of melanin with cell wall components in the melanized mycobiont. In addition, higher antioxidant activity and lower respiratory activity were found in the melanized thalli of C. islandica in comparison with the pale thalli. Presumably, the found modifications in the microstructure and nanomechanical, physiological, and biochemical properties of thalli occurring in the course of melanization make lichens more resistant to intense insolation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.00
自引率
14.30%
发文量
107
审稿时长
6 months
期刊介绍: Russian Journal of Plant Physiology is a leading journal in phytophysiology. It embraces the full spectrum of plant physiology and brings together the related aspects of biophysics, biochemistry, cytology, anatomy, genetics, etc. The journal publishes experimental and theoretical articles, reviews, short communications, and descriptions of new methods. Some issues cover special problems of plant physiology, thus presenting collections of articles and providing information in rapidly growing fields. The editorial board is highly interested in publishing research from all countries and accepts manuscripts in English.
期刊最新文献
Physiochemical and Molecular Response of the Grafted ‘Bidaneh Ghermez’ Grape Cultivar on Native Rootstocks to Identify Tolerant Combination to Drought Stress in Vineyard Conditions Energy and Pro-/Antioxidant Metabolism of Heracleum sosnowskyi Manden. Buds during the Winter Dormancy Insights into the Metabolism of Rice Leaves (Oryza sativa L.) under Shade Stress by Investigating the Metabolite Profile Using Gas Chromatography-Mass Spectrometry (GC-MS) Analysis Decoding Phytotoxicity: The Predictive Power of Total Soil Copper Content in Long-Term Pepper Growth in Copper-Polluted Soils Histological Identification of Physiological Changes in Vascular Cell Morphology in the Lower Stem of Winter Barley (Hordeum vulgare L.) during Freezing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1