Gianluca Ceruti, Lukas Einkemmer, Jonas Kusch, Christian Lubich
{"title":"基于中点规则的稳健二阶低阶 BUG 积分器","authors":"Gianluca Ceruti, Lukas Einkemmer, Jonas Kusch, Christian Lubich","doi":"10.1007/s10543-024-01032-x","DOIUrl":null,"url":null,"abstract":"<p>Dynamical low-rank approximation has become a valuable tool to perform an on-the-fly model order reduction for prohibitively large matrix differential equations. A core ingredient is the construction of integrators that are robust to the presence of small singular values and the resulting large time derivatives of the orthogonal factors in the low-rank matrix representation. Recently, the robust basis-update & Galerkin (BUG) class of integrators has been introduced. These methods require no steps that evolve the solution backward in time, often have favourable structure-preserving properties, and allow for parallel time-updates of the low-rank factors. The BUG framework is flexible enough to allow for adaptations to these and further requirements. However, the BUG methods presented so far have only first-order robust error bounds. This work proposes a second-order BUG integrator for dynamical low-rank approximation based on the midpoint quadrature rule. The integrator first performs a half-step with a first-order BUG integrator, followed by a Galerkin update with a suitably augmented basis. We prove a robust second-order error bound which in addition shows an improved dependence on the normal component of the vector field. These rigorous results are illustrated and complemented by a number of numerical experiments.</p>","PeriodicalId":55351,"journal":{"name":"BIT Numerical Mathematics","volume":"71 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A robust second-order low-rank BUG integrator based on the midpoint rule\",\"authors\":\"Gianluca Ceruti, Lukas Einkemmer, Jonas Kusch, Christian Lubich\",\"doi\":\"10.1007/s10543-024-01032-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Dynamical low-rank approximation has become a valuable tool to perform an on-the-fly model order reduction for prohibitively large matrix differential equations. A core ingredient is the construction of integrators that are robust to the presence of small singular values and the resulting large time derivatives of the orthogonal factors in the low-rank matrix representation. Recently, the robust basis-update & Galerkin (BUG) class of integrators has been introduced. These methods require no steps that evolve the solution backward in time, often have favourable structure-preserving properties, and allow for parallel time-updates of the low-rank factors. The BUG framework is flexible enough to allow for adaptations to these and further requirements. However, the BUG methods presented so far have only first-order robust error bounds. This work proposes a second-order BUG integrator for dynamical low-rank approximation based on the midpoint quadrature rule. The integrator first performs a half-step with a first-order BUG integrator, followed by a Galerkin update with a suitably augmented basis. We prove a robust second-order error bound which in addition shows an improved dependence on the normal component of the vector field. These rigorous results are illustrated and complemented by a number of numerical experiments.</p>\",\"PeriodicalId\":55351,\"journal\":{\"name\":\"BIT Numerical Mathematics\",\"volume\":\"71 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BIT Numerical Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10543-024-01032-x\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BIT Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10543-024-01032-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
A robust second-order low-rank BUG integrator based on the midpoint rule
Dynamical low-rank approximation has become a valuable tool to perform an on-the-fly model order reduction for prohibitively large matrix differential equations. A core ingredient is the construction of integrators that are robust to the presence of small singular values and the resulting large time derivatives of the orthogonal factors in the low-rank matrix representation. Recently, the robust basis-update & Galerkin (BUG) class of integrators has been introduced. These methods require no steps that evolve the solution backward in time, often have favourable structure-preserving properties, and allow for parallel time-updates of the low-rank factors. The BUG framework is flexible enough to allow for adaptations to these and further requirements. However, the BUG methods presented so far have only first-order robust error bounds. This work proposes a second-order BUG integrator for dynamical low-rank approximation based on the midpoint quadrature rule. The integrator first performs a half-step with a first-order BUG integrator, followed by a Galerkin update with a suitably augmented basis. We prove a robust second-order error bound which in addition shows an improved dependence on the normal component of the vector field. These rigorous results are illustrated and complemented by a number of numerical experiments.
期刊介绍:
The journal BIT has been published since 1961. BIT publishes original research papers in the rapidly developing field of numerical analysis. The essential areas covered by BIT are development and analysis of numerical methods as well as the design and use of algorithms for scientific computing. Topics emphasized by BIT include numerical methods in approximation, linear algebra, and ordinary and partial differential equations.