A. Duran, K. E. Speare, C. Fuchs, T. C. Adam, L. Palma, M. W. Miller, L. Collado-Vides, A. R. Harborne, D. E. Burkepile
{"title":"长期沉积的藻类草皮可能会影响佛罗里达珊瑚礁上珊瑚的恢复","authors":"A. Duran, K. E. Speare, C. Fuchs, T. C. Adam, L. Palma, M. W. Miller, L. Collado-Vides, A. R. Harborne, D. E. Burkepile","doi":"10.1007/s00338-024-02532-6","DOIUrl":null,"url":null,"abstract":"<p>Coral reefs in the Florida Reef Tract have seen protracted loss of coral over the past several decades due to a variety of disturbances from marine heat waves, cold snaps, and disease events. Corals have not recovered despite abundant herbivorous fishes and relatively low macroalgal cover, two factors thought to facilitate resilience of corals. Thus, factors affecting the replenishment of coral populations may be hindering the recovery of corals. To study the potential factors affecting coral recovery in reefs of the Florida Reef Tract, we assessed benthic abiotic variables (substrate slope, depth, structural complexity, and abundance of sediment), fish assemblages, and benthic composition in three different reef habitats (groove, spur wall, spur top) located on three low-relief reefs and three high-relief spur-and-groove reefs. Herbivorous fish biomass ranged (44.7–107 g m<sup>−2</sup>), which is above average for the Caribbean. Yet there was low coral cover (~ 1%) and low density (~ 1 coral m<sup>2</sup>) of small adult corals, which likely reflects the cumulative effects of years of disturbances. The presence and density of juvenile corals were negatively correlated with the depth of the sediment layer trapped within long, sediment-laden algal turfs (LSAT), which are particularly abundant (> 50% cover) in low complexity reef habitats (low-relief groove, low-relief spur top, and high-relief groove). Our results indicate that current unsuitable habitat conditions (high sediment load) for early life stage corals may be an important factor preventing coral recovery. Consequently, the abundance of herbivorous fishes and coral cover trajectories appear decoupled in the region, and additional management initiatives considering LSAT composition are required to aid reef resilience.</p>","PeriodicalId":10821,"journal":{"name":"Coral Reefs","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Long sediment-laden algal turf likely impairs coral recovery on Florida’s coral reefs\",\"authors\":\"A. Duran, K. E. Speare, C. Fuchs, T. C. Adam, L. Palma, M. W. Miller, L. Collado-Vides, A. R. Harborne, D. E. Burkepile\",\"doi\":\"10.1007/s00338-024-02532-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Coral reefs in the Florida Reef Tract have seen protracted loss of coral over the past several decades due to a variety of disturbances from marine heat waves, cold snaps, and disease events. Corals have not recovered despite abundant herbivorous fishes and relatively low macroalgal cover, two factors thought to facilitate resilience of corals. Thus, factors affecting the replenishment of coral populations may be hindering the recovery of corals. To study the potential factors affecting coral recovery in reefs of the Florida Reef Tract, we assessed benthic abiotic variables (substrate slope, depth, structural complexity, and abundance of sediment), fish assemblages, and benthic composition in three different reef habitats (groove, spur wall, spur top) located on three low-relief reefs and three high-relief spur-and-groove reefs. Herbivorous fish biomass ranged (44.7–107 g m<sup>−2</sup>), which is above average for the Caribbean. Yet there was low coral cover (~ 1%) and low density (~ 1 coral m<sup>2</sup>) of small adult corals, which likely reflects the cumulative effects of years of disturbances. The presence and density of juvenile corals were negatively correlated with the depth of the sediment layer trapped within long, sediment-laden algal turfs (LSAT), which are particularly abundant (> 50% cover) in low complexity reef habitats (low-relief groove, low-relief spur top, and high-relief groove). Our results indicate that current unsuitable habitat conditions (high sediment load) for early life stage corals may be an important factor preventing coral recovery. Consequently, the abundance of herbivorous fishes and coral cover trajectories appear decoupled in the region, and additional management initiatives considering LSAT composition are required to aid reef resilience.</p>\",\"PeriodicalId\":10821,\"journal\":{\"name\":\"Coral Reefs\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Coral Reefs\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00338-024-02532-6\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MARINE & FRESHWATER BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coral Reefs","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00338-024-02532-6","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
在过去的几十年里,由于海洋热浪、寒流和疾病事件等各种干扰,佛罗里达珊瑚礁带的珊瑚长期减少。尽管有丰富的食草鱼类和相对较低的大型藻类覆盖率(这两个因素被认为有利于珊瑚的恢复),但珊瑚仍未恢复。因此,影响珊瑚种群补充的因素可能会阻碍珊瑚的恢复。为了研究影响佛罗里达珊瑚礁带珊瑚礁恢复的潜在因素,我们评估了位于三个低浮力珊瑚礁和三个高浮力刺槽珊瑚礁上的三种不同珊瑚礁栖息地(凹槽、刺壁、刺顶)的底栖非生物变量(基质坡度、深度、结构复杂性和沉积物丰度)、鱼类组合和底栖组成。食草鱼类的生物量范围为(44.7-107 g m-2),高于加勒比地区的平均水平。然而,珊瑚覆盖率低(约 1%),小的成珊瑚密度低(约 1 珊瑚平方米),这可能反映了多年干扰的累积效应。幼体珊瑚的存在和密度与沉积层的深度呈负相关,沉积层被困在长条形的富含沉积物的藻类草皮(LSAT)中,在低复杂度的珊瑚礁生境(低浮凸沟槽、低浮凸刺顶和高浮凸沟槽)中,这种藻类草皮特别多(> 50%覆盖率)。我们的研究结果表明,目前不适合早期珊瑚栖息的生境条件(高沉积物负荷)可能是阻碍珊瑚恢复的一个重要因素。因此,该地区草食性鱼类的数量与珊瑚覆盖率的轨迹似乎是脱钩的,因此需要采取更多的管理措施来考虑 LSAT 的组成,以提高珊瑚礁的恢复能力。
Long sediment-laden algal turf likely impairs coral recovery on Florida’s coral reefs
Coral reefs in the Florida Reef Tract have seen protracted loss of coral over the past several decades due to a variety of disturbances from marine heat waves, cold snaps, and disease events. Corals have not recovered despite abundant herbivorous fishes and relatively low macroalgal cover, two factors thought to facilitate resilience of corals. Thus, factors affecting the replenishment of coral populations may be hindering the recovery of corals. To study the potential factors affecting coral recovery in reefs of the Florida Reef Tract, we assessed benthic abiotic variables (substrate slope, depth, structural complexity, and abundance of sediment), fish assemblages, and benthic composition in three different reef habitats (groove, spur wall, spur top) located on three low-relief reefs and three high-relief spur-and-groove reefs. Herbivorous fish biomass ranged (44.7–107 g m−2), which is above average for the Caribbean. Yet there was low coral cover (~ 1%) and low density (~ 1 coral m2) of small adult corals, which likely reflects the cumulative effects of years of disturbances. The presence and density of juvenile corals were negatively correlated with the depth of the sediment layer trapped within long, sediment-laden algal turfs (LSAT), which are particularly abundant (> 50% cover) in low complexity reef habitats (low-relief groove, low-relief spur top, and high-relief groove). Our results indicate that current unsuitable habitat conditions (high sediment load) for early life stage corals may be an important factor preventing coral recovery. Consequently, the abundance of herbivorous fishes and coral cover trajectories appear decoupled in the region, and additional management initiatives considering LSAT composition are required to aid reef resilience.
期刊介绍:
Coral Reefs, the Journal of the International Coral Reef Society, presents multidisciplinary literature across the broad fields of reef studies, publishing analytical and theoretical papers on both modern and ancient reefs. These encourage the search for theories about reef structure and dynamics, and the use of experimentation, modeling, quantification and the applied sciences.
Coverage includes such subject areas as population dynamics; community ecology of reef organisms; energy and nutrient flows; biogeochemical cycles; physiology of calcification; reef responses to natural and anthropogenic influences; stress markers in reef organisms; behavioural ecology; sedimentology; diagenesis; reef structure and morphology; evolutionary ecology of the reef biota; palaeoceanography of coral reefs and coral islands; reef management and its underlying disciplines; molecular biology and genetics of coral; aetiology of disease in reef-related organisms; reef responses to global change, and more.