{"title":"直接发泡方法对偏高岭土基泡沫土工聚合物早期性能和微观结构的影响","authors":"Dawei Chen, Yajun Zhang, Wenxin Wang, Yangpiaoxue Shi, Jiaxi Mao, Yi Liu, Dongming Yan, Shikun Chen","doi":"10.1111/ijac.14848","DOIUrl":null,"url":null,"abstract":"This study aims to explore the influence of direct foaming methods on the early‐stage performance and microstructure of metakaolin‐based geopolymer foam. Metakaolin is utilized as the primary silica–aluminum raw material, with various foaming methods employed to produce metakaolin‐based foam geopolymers exhibiting different dry apparent density gradients. The investigation encompasses an assessment of hardening time, early‐stage compressive strength development, and water absorption behavior of the foam geopolymers. Employing scanning electron microscopy (SEM) for microscopic morphology analysis, mercury intrusion porosimetry (MIP), X‐ray diffraction (XRD), and hot disk transient plane source method for chemical structure analysis, the study delves into the underlying mechanisms. Results reveal that the early compressive strength development of metakaolin‐based foam geopolymer is notably rapid, with the hydrogen peroxide foaming method demonstrating the swiftest performance. Among foam geopolymers of equivalent density levels, those produced via physical foaming exhibit the highest compressive strength, while those utilizing silicon carbide foaming display the lowest. Across different foaming methods, the foam geopolymer consistently demonstrates specific trends in pore structure characteristics, with a predominance of macropores in the low‐density range and gel nanopores in the high‐density range.","PeriodicalId":13903,"journal":{"name":"International Journal of Applied Ceramic Technology","volume":"104 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of direct foaming methods on the early performance and microstructure of metakaolin‐based foam geopolymers\",\"authors\":\"Dawei Chen, Yajun Zhang, Wenxin Wang, Yangpiaoxue Shi, Jiaxi Mao, Yi Liu, Dongming Yan, Shikun Chen\",\"doi\":\"10.1111/ijac.14848\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study aims to explore the influence of direct foaming methods on the early‐stage performance and microstructure of metakaolin‐based geopolymer foam. Metakaolin is utilized as the primary silica–aluminum raw material, with various foaming methods employed to produce metakaolin‐based foam geopolymers exhibiting different dry apparent density gradients. The investigation encompasses an assessment of hardening time, early‐stage compressive strength development, and water absorption behavior of the foam geopolymers. Employing scanning electron microscopy (SEM) for microscopic morphology analysis, mercury intrusion porosimetry (MIP), X‐ray diffraction (XRD), and hot disk transient plane source method for chemical structure analysis, the study delves into the underlying mechanisms. Results reveal that the early compressive strength development of metakaolin‐based foam geopolymer is notably rapid, with the hydrogen peroxide foaming method demonstrating the swiftest performance. Among foam geopolymers of equivalent density levels, those produced via physical foaming exhibit the highest compressive strength, while those utilizing silicon carbide foaming display the lowest. Across different foaming methods, the foam geopolymer consistently demonstrates specific trends in pore structure characteristics, with a predominance of macropores in the low‐density range and gel nanopores in the high‐density range.\",\"PeriodicalId\":13903,\"journal\":{\"name\":\"International Journal of Applied Ceramic Technology\",\"volume\":\"104 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Ceramic Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1111/ijac.14848\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Ceramic Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1111/ijac.14848","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
Influence of direct foaming methods on the early performance and microstructure of metakaolin‐based foam geopolymers
This study aims to explore the influence of direct foaming methods on the early‐stage performance and microstructure of metakaolin‐based geopolymer foam. Metakaolin is utilized as the primary silica–aluminum raw material, with various foaming methods employed to produce metakaolin‐based foam geopolymers exhibiting different dry apparent density gradients. The investigation encompasses an assessment of hardening time, early‐stage compressive strength development, and water absorption behavior of the foam geopolymers. Employing scanning electron microscopy (SEM) for microscopic morphology analysis, mercury intrusion porosimetry (MIP), X‐ray diffraction (XRD), and hot disk transient plane source method for chemical structure analysis, the study delves into the underlying mechanisms. Results reveal that the early compressive strength development of metakaolin‐based foam geopolymer is notably rapid, with the hydrogen peroxide foaming method demonstrating the swiftest performance. Among foam geopolymers of equivalent density levels, those produced via physical foaming exhibit the highest compressive strength, while those utilizing silicon carbide foaming display the lowest. Across different foaming methods, the foam geopolymer consistently demonstrates specific trends in pore structure characteristics, with a predominance of macropores in the low‐density range and gel nanopores in the high‐density range.
期刊介绍:
The International Journal of Applied Ceramic Technology publishes cutting edge applied research and development work focused on commercialization of engineered ceramics, products and processes. The publication also explores the barriers to commercialization, design and testing, environmental health issues, international standardization activities, databases, and cost models. Designed to get high quality information to end-users quickly, the peer process is led by an editorial board of experts from industry, government, and universities. Each issue focuses on a high-interest, high-impact topic plus includes a range of papers detailing applications of ceramics. Papers on all aspects of applied ceramics are welcome including those in the following areas:
Nanotechnology applications;
Ceramic Armor;
Ceramic and Technology for Energy Applications (e.g., Fuel Cells, Batteries, Solar, Thermoelectric, and HT Superconductors);
Ceramic Matrix Composites;
Functional Materials;
Thermal and Environmental Barrier Coatings;
Bioceramic Applications;
Green Manufacturing;
Ceramic Processing;
Glass Technology;
Fiber optics;
Ceramics in Environmental Applications;
Ceramics in Electronic, Photonic and Magnetic Applications;