{"title":"利用航磁数据调查埃及红海中东部沙漠的地热资源","authors":"Gaber M Gaber, Salah Saleh, Adel Kotb","doi":"10.1007/s12040-024-02347-7","DOIUrl":null,"url":null,"abstract":"<p>This research delves into the unexplored geothermal resources within Egypt’s internationally significant Red Sea and Central Eastern Desert regions, recognized for their renewable energy prospects. Surface thermal manifestations in granitic rocks, abundant in radioactive minerals, and geothermal anomalies along the depocenter regions of the Red Sea rift highlight the medium to high geothermal resources in the area. Utilizing an extensive dataset of aeromagnetic data, including derived heat flow (HF) data, geothermal surveys, and radioactive analysis of granitic rock samples, this study employs cutting-edge geophysical methodologies, particularly aeromagnetic data analysis, to identify the structural trends of the study area. The results reveal a range of medium to high heat flow values, determined through meticulous examination of the Curie depth point, temperature gradient, and HF data. Comparative analysis with seismicity data and the structural framework unveils distinct geothermal sources, setting this region apart within Egypt. The observed correlation between high-seismicity areas, structural locations, and HF map locations suggests a significant role of geodynamic motions in shaping the heat flow patterns. By highlighting the substantial geothermal potential, this study underscores the importance of advanced geophysical data in accurately identifying potential energy sources. The insights derived from this research hold global relevance, providing guidance for future exploration and development initiatives and contributing to the international discourse on transitioning to renewable energy. However, a comprehensive evaluation that incorporates radioactive analysis and exploratory drilling is crucial for fully unlocking the geothermal potential in this strategically important study area.</p>","PeriodicalId":15609,"journal":{"name":"Journal of Earth System Science","volume":"28 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigating geothermal resources in the Central Eastern Desert of Red Sea, Egypt, using aeromagnetic data\",\"authors\":\"Gaber M Gaber, Salah Saleh, Adel Kotb\",\"doi\":\"10.1007/s12040-024-02347-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This research delves into the unexplored geothermal resources within Egypt’s internationally significant Red Sea and Central Eastern Desert regions, recognized for their renewable energy prospects. Surface thermal manifestations in granitic rocks, abundant in radioactive minerals, and geothermal anomalies along the depocenter regions of the Red Sea rift highlight the medium to high geothermal resources in the area. Utilizing an extensive dataset of aeromagnetic data, including derived heat flow (HF) data, geothermal surveys, and radioactive analysis of granitic rock samples, this study employs cutting-edge geophysical methodologies, particularly aeromagnetic data analysis, to identify the structural trends of the study area. The results reveal a range of medium to high heat flow values, determined through meticulous examination of the Curie depth point, temperature gradient, and HF data. Comparative analysis with seismicity data and the structural framework unveils distinct geothermal sources, setting this region apart within Egypt. The observed correlation between high-seismicity areas, structural locations, and HF map locations suggests a significant role of geodynamic motions in shaping the heat flow patterns. By highlighting the substantial geothermal potential, this study underscores the importance of advanced geophysical data in accurately identifying potential energy sources. The insights derived from this research hold global relevance, providing guidance for future exploration and development initiatives and contributing to the international discourse on transitioning to renewable energy. However, a comprehensive evaluation that incorporates radioactive analysis and exploratory drilling is crucial for fully unlocking the geothermal potential in this strategically important study area.</p>\",\"PeriodicalId\":15609,\"journal\":{\"name\":\"Journal of Earth System Science\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Earth System Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s12040-024-02347-7\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Earth System Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s12040-024-02347-7","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Investigating geothermal resources in the Central Eastern Desert of Red Sea, Egypt, using aeromagnetic data
This research delves into the unexplored geothermal resources within Egypt’s internationally significant Red Sea and Central Eastern Desert regions, recognized for their renewable energy prospects. Surface thermal manifestations in granitic rocks, abundant in radioactive minerals, and geothermal anomalies along the depocenter regions of the Red Sea rift highlight the medium to high geothermal resources in the area. Utilizing an extensive dataset of aeromagnetic data, including derived heat flow (HF) data, geothermal surveys, and radioactive analysis of granitic rock samples, this study employs cutting-edge geophysical methodologies, particularly aeromagnetic data analysis, to identify the structural trends of the study area. The results reveal a range of medium to high heat flow values, determined through meticulous examination of the Curie depth point, temperature gradient, and HF data. Comparative analysis with seismicity data and the structural framework unveils distinct geothermal sources, setting this region apart within Egypt. The observed correlation between high-seismicity areas, structural locations, and HF map locations suggests a significant role of geodynamic motions in shaping the heat flow patterns. By highlighting the substantial geothermal potential, this study underscores the importance of advanced geophysical data in accurately identifying potential energy sources. The insights derived from this research hold global relevance, providing guidance for future exploration and development initiatives and contributing to the international discourse on transitioning to renewable energy. However, a comprehensive evaluation that incorporates radioactive analysis and exploratory drilling is crucial for fully unlocking the geothermal potential in this strategically important study area.
期刊介绍:
The Journal of Earth System Science, an International Journal, was earlier a part of the Proceedings of the Indian Academy of Sciences – Section A begun in 1934, and later split in 1978 into theme journals. This journal was published as Proceedings – Earth and Planetary Sciences since 1978, and in 2005 was renamed ‘Journal of Earth System Science’.
The journal is highly inter-disciplinary and publishes scholarly research – new data, ideas, and conceptual advances – in Earth System Science. The focus is on the evolution of the Earth as a system: manuscripts describing changes of anthropogenic origin in a limited region are not considered unless they go beyond describing the changes to include an analysis of earth-system processes. The journal''s scope includes the solid earth (geosphere), the atmosphere, the hydrosphere (including cryosphere), and the biosphere; it also addresses related aspects of planetary and space sciences. Contributions pertaining to the Indian sub- continent and the surrounding Indian-Ocean region are particularly welcome. Given that a large number of manuscripts report either observations or model results for a limited domain, manuscripts intended for publication in JESS are expected to fulfill at least one of the following three criteria.
The data should be of relevance and should be of statistically significant size and from a region from where such data are sparse. If the data are from a well-sampled region, the data size should be considerable and advance our knowledge of the region.
A model study is carried out to explain observations reported either in the same manuscript or in the literature.
The analysis, whether of data or with models, is novel and the inferences advance the current knowledge.