Laila A. Elsayed, Abdullah M. Saif, Shrouk E. Elghol, Maha N. Zayed, Yomna M. Amin, Mohamed H. Omran, Mahmoud A. Ragab, Randa A. Althobiti, Gomaa A.M. Ali
{"title":"全面回顾作为抗癌剂的前景看好的植物成分:不同癌症的生物学机制和应用","authors":"Laila A. Elsayed, Abdullah M. Saif, Shrouk E. Elghol, Maha N. Zayed, Yomna M. Amin, Mohamed H. Omran, Mahmoud A. Ragab, Randa A. Althobiti, Gomaa A.M. Ali","doi":"10.2174/0115734137294302240625045852","DOIUrl":null,"url":null,"abstract":": Cancer, claiming approximately 10 million lives annually, remains a leading cause of global mortality. Conventional cancer treatments, notably chemotherapy and radiotherapy, often entail adverse effects, such as cytotoxicity and the development of resistance, posing significant challenges in cancer management. While natural products have historically served medicinal purposes for various ailments, their recent prominence in combating cancer-related manifestations has surged. Utilizing natural products either alone as antineoplastic agents or in conjunction with conventional chemotherapies presents a promising approach to mitigate these adverse effects. The appeal of natural products lies in their accessibility, versatility, reduced cytotoxic potential, and capacity to counteract drug resistance. Various natural sources offer a diverse range of bioactive compounds capable of influencing various cancer types, modulating signaling pathways, and altering the cancer microenvironment. Notably, many bioactive compounds impact crucial cellular processes like metastasis, angiogenesis, metabolism, proliferation, and viability by targeting specific signaling pathways, particularly those involved in cellular apoptosis. Consequently, the modulation of these factors by natural products significantly affects cancer cell behavior. This comprehensive review explores the application of the promising phytoconstituents as anti-cancer agents across prevalent cancer types, including liver, lung, bladder, breast, leukemia, and colon cancer. In addition, it explores the anti-cancer properties of natural compounds, focusing on their mechanisms and effectiveness against diverse cancers, aiming to improve cancer management.","PeriodicalId":10827,"journal":{"name":"Current Nanoscience","volume":"39 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Comprehensive Review of Promising Phytoconstituents as Anti-Cancer Agents: Biological Mechanisms and Applications Across Different Cancers\",\"authors\":\"Laila A. Elsayed, Abdullah M. Saif, Shrouk E. Elghol, Maha N. Zayed, Yomna M. Amin, Mohamed H. Omran, Mahmoud A. Ragab, Randa A. Althobiti, Gomaa A.M. Ali\",\"doi\":\"10.2174/0115734137294302240625045852\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": Cancer, claiming approximately 10 million lives annually, remains a leading cause of global mortality. Conventional cancer treatments, notably chemotherapy and radiotherapy, often entail adverse effects, such as cytotoxicity and the development of resistance, posing significant challenges in cancer management. While natural products have historically served medicinal purposes for various ailments, their recent prominence in combating cancer-related manifestations has surged. Utilizing natural products either alone as antineoplastic agents or in conjunction with conventional chemotherapies presents a promising approach to mitigate these adverse effects. The appeal of natural products lies in their accessibility, versatility, reduced cytotoxic potential, and capacity to counteract drug resistance. Various natural sources offer a diverse range of bioactive compounds capable of influencing various cancer types, modulating signaling pathways, and altering the cancer microenvironment. Notably, many bioactive compounds impact crucial cellular processes like metastasis, angiogenesis, metabolism, proliferation, and viability by targeting specific signaling pathways, particularly those involved in cellular apoptosis. Consequently, the modulation of these factors by natural products significantly affects cancer cell behavior. This comprehensive review explores the application of the promising phytoconstituents as anti-cancer agents across prevalent cancer types, including liver, lung, bladder, breast, leukemia, and colon cancer. In addition, it explores the anti-cancer properties of natural compounds, focusing on their mechanisms and effectiveness against diverse cancers, aiming to improve cancer management.\",\"PeriodicalId\":10827,\"journal\":{\"name\":\"Current Nanoscience\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Nanoscience\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.2174/0115734137294302240625045852\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Nanoscience","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.2174/0115734137294302240625045852","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
A Comprehensive Review of Promising Phytoconstituents as Anti-Cancer Agents: Biological Mechanisms and Applications Across Different Cancers
: Cancer, claiming approximately 10 million lives annually, remains a leading cause of global mortality. Conventional cancer treatments, notably chemotherapy and radiotherapy, often entail adverse effects, such as cytotoxicity and the development of resistance, posing significant challenges in cancer management. While natural products have historically served medicinal purposes for various ailments, their recent prominence in combating cancer-related manifestations has surged. Utilizing natural products either alone as antineoplastic agents or in conjunction with conventional chemotherapies presents a promising approach to mitigate these adverse effects. The appeal of natural products lies in their accessibility, versatility, reduced cytotoxic potential, and capacity to counteract drug resistance. Various natural sources offer a diverse range of bioactive compounds capable of influencing various cancer types, modulating signaling pathways, and altering the cancer microenvironment. Notably, many bioactive compounds impact crucial cellular processes like metastasis, angiogenesis, metabolism, proliferation, and viability by targeting specific signaling pathways, particularly those involved in cellular apoptosis. Consequently, the modulation of these factors by natural products significantly affects cancer cell behavior. This comprehensive review explores the application of the promising phytoconstituents as anti-cancer agents across prevalent cancer types, including liver, lung, bladder, breast, leukemia, and colon cancer. In addition, it explores the anti-cancer properties of natural compounds, focusing on their mechanisms and effectiveness against diverse cancers, aiming to improve cancer management.
期刊介绍:
Current Nanoscience publishes (a) Authoritative/Mini Reviews, and (b) Original Research and Highlights written by experts covering the most recent advances in nanoscience and nanotechnology. All aspects of the field are represented including nano-structures, nano-bubbles, nano-droplets and nanofluids. Applications of nanoscience in physics, material science, chemistry, synthesis, environmental science, electronics, biomedical nanotechnology, biomedical engineering, biotechnology, medicine and pharmaceuticals are also covered. The journal is essential to all researches involved in nanoscience and its applied and fundamental areas of science, chemistry, physics, material science, engineering and medicine.
Current Nanoscience also welcomes submissions on the following topics of Nanoscience and Nanotechnology:
Nanoelectronics and photonics
Advanced Nanomaterials
Nanofabrication and measurement
Nanobiotechnology and nanomedicine
Nanotechnology for energy
Sensors and actuator
Computational nanoscience and technology.