通过等离子体增强原子层沉积在 200 毫米玻璃和二氧化硅/硅基底上生长多晶 MoS2 的晶圆级演示

IF 6.4 3区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Advanced Materials Technologies Pub Date : 2024-07-12 DOI:10.1002/admt.202400492
Julia Jagosz, Leander Willeke, Nils Gerke, Malte J. M. J. Becher, Paul Plate, Aleksander Kostka, Detlef Rogalla, Andreas Ostendorf, Claudia Bock
{"title":"通过等离子体增强原子层沉积在 200 毫米玻璃和二氧化硅/硅基底上生长多晶 MoS2 的晶圆级演示","authors":"Julia Jagosz,&nbsp;Leander Willeke,&nbsp;Nils Gerke,&nbsp;Malte J. M. J. Becher,&nbsp;Paul Plate,&nbsp;Aleksander Kostka,&nbsp;Detlef Rogalla,&nbsp;Andreas Ostendorf,&nbsp;Claudia Bock","doi":"10.1002/admt.202400492","DOIUrl":null,"url":null,"abstract":"<p>2D materials like transition metal dichalcogenides (TMDCs) have been widely studied and are a gateway to modern technologies. While research today is mostly carried out on a laboratory scale, there is an intensive need for reliable processes on a wafer-scale, starting with monolayer-precise deposition of high-quality films. In this work, a plasma-enhanced atomic layer deposition (PEALD) process is developed on a 200 mm SiO<sub>2</sub>/Si substrate. The layers are investigated regarding crystallinity, composition, homogeneity, microstructure, topography, and electrical properties. The process is then applied on 200 mm alkali-free glass wafers aiming toward flexible electronics and compatibility with Si processes. A complete coverage of the wafer with a satisfying uniformity is achieved on both substrates and direct polycrystalline growth of MoS<sub>2</sub> films is verified on the entire wafer at a substrate temperature of <i>T </i>= 230 °C. On glass, the deposited MoS<sub>2</sub> films exhibit a higher crystallinity and are more planar compared to the SiO<sub>2</sub>/Si substrate. Furthermore, application relevant few-nanometer thick layers are investigated in detail. This low-temperature process inspires optimism for future direct integration of 2D-materials in an economical bottom-up approach on a wide variety of substrates, thus paving the way for industrial mass production.</p>","PeriodicalId":7292,"journal":{"name":"Advanced Materials Technologies","volume":"9 22","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admt.202400492","citationCount":"0","resultStr":"{\"title\":\"Wafer-Scale Demonstration of Polycrystalline MoS2 Growth on 200 mm Glass and SiO2/Si Substrates by Plasma-Enhanced Atomic Layer Deposition\",\"authors\":\"Julia Jagosz,&nbsp;Leander Willeke,&nbsp;Nils Gerke,&nbsp;Malte J. M. J. Becher,&nbsp;Paul Plate,&nbsp;Aleksander Kostka,&nbsp;Detlef Rogalla,&nbsp;Andreas Ostendorf,&nbsp;Claudia Bock\",\"doi\":\"10.1002/admt.202400492\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>2D materials like transition metal dichalcogenides (TMDCs) have been widely studied and are a gateway to modern technologies. While research today is mostly carried out on a laboratory scale, there is an intensive need for reliable processes on a wafer-scale, starting with monolayer-precise deposition of high-quality films. In this work, a plasma-enhanced atomic layer deposition (PEALD) process is developed on a 200 mm SiO<sub>2</sub>/Si substrate. The layers are investigated regarding crystallinity, composition, homogeneity, microstructure, topography, and electrical properties. The process is then applied on 200 mm alkali-free glass wafers aiming toward flexible electronics and compatibility with Si processes. A complete coverage of the wafer with a satisfying uniformity is achieved on both substrates and direct polycrystalline growth of MoS<sub>2</sub> films is verified on the entire wafer at a substrate temperature of <i>T </i>= 230 °C. On glass, the deposited MoS<sub>2</sub> films exhibit a higher crystallinity and are more planar compared to the SiO<sub>2</sub>/Si substrate. Furthermore, application relevant few-nanometer thick layers are investigated in detail. This low-temperature process inspires optimism for future direct integration of 2D-materials in an economical bottom-up approach on a wide variety of substrates, thus paving the way for industrial mass production.</p>\",\"PeriodicalId\":7292,\"journal\":{\"name\":\"Advanced Materials Technologies\",\"volume\":\"9 22\",\"pages\":\"\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2024-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admt.202400492\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials Technologies\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/admt.202400492\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Technologies","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/admt.202400492","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

过渡金属二钙化物(TMDCs)等二维材料已被广泛研究,并成为现代技术的入口。虽然目前的研究大多在实验室规模上进行,但从高质量薄膜的单层精确沉积开始,在晶圆规模上对可靠工艺的需求日益强烈。在这项工作中,在 200 毫米的二氧化硅/硅基底上开发了等离子体增强原子层沉积(PEALD)工艺。对薄膜层的结晶度、成分、均匀性、微观结构、形貌和电气性能进行了研究。然后将该工艺应用于 200 毫米无碱玻璃晶片上,旨在实现柔性电子器件和与硅工艺的兼容性。在基底温度 T = 230 °C 的条件下,MoS2 薄膜以令人满意的均匀性完全覆盖了整个晶片,并在整个晶片上实现了直接多晶生长。与二氧化硅/硅衬底相比,在玻璃上沉积的 MoS2 薄膜显示出更高的结晶度和更大的平面度。此外,还详细研究了与应用相关的几纳米厚层。这种低温工艺为未来在各种基底上以经济的自下而上方法直接集成二维材料带来了希望,从而为工业化大规模生产铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Wafer-Scale Demonstration of Polycrystalline MoS2 Growth on 200 mm Glass and SiO2/Si Substrates by Plasma-Enhanced Atomic Layer Deposition

2D materials like transition metal dichalcogenides (TMDCs) have been widely studied and are a gateway to modern technologies. While research today is mostly carried out on a laboratory scale, there is an intensive need for reliable processes on a wafer-scale, starting with monolayer-precise deposition of high-quality films. In this work, a plasma-enhanced atomic layer deposition (PEALD) process is developed on a 200 mm SiO2/Si substrate. The layers are investigated regarding crystallinity, composition, homogeneity, microstructure, topography, and electrical properties. The process is then applied on 200 mm alkali-free glass wafers aiming toward flexible electronics and compatibility with Si processes. A complete coverage of the wafer with a satisfying uniformity is achieved on both substrates and direct polycrystalline growth of MoS2 films is verified on the entire wafer at a substrate temperature of = 230 °C. On glass, the deposited MoS2 films exhibit a higher crystallinity and are more planar compared to the SiO2/Si substrate. Furthermore, application relevant few-nanometer thick layers are investigated in detail. This low-temperature process inspires optimism for future direct integration of 2D-materials in an economical bottom-up approach on a wide variety of substrates, thus paving the way for industrial mass production.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials Technologies
Advanced Materials Technologies Materials Science-General Materials Science
CiteScore
10.20
自引率
4.40%
发文量
566
期刊介绍: Advanced Materials Technologies Advanced Materials Technologies is the new home for all technology-related materials applications research, with particular focus on advanced device design, fabrication and integration, as well as new technologies based on novel materials. It bridges the gap between fundamental laboratory research and industry.
期刊最新文献
A Nanomechanical Transducer for Remote Signal Transmission onto the Tympanic Membrane–Playing Music on a Different Drum (Adv. Mater. Technol. 22/2024) Dual-Material Aerosol Jet Printing of Magneto-Responsive Polymers with In-Process Tailorable Composition for Small-Scale Soft Robotics (Adv. Mater. Technol. 22/2024) Masthead: (Adv. Mater. Technol. 22/2024) Realizing the High Efficiency of Type-II Superlattice Infrared Sensors Integrated Wire-Grid Polarizer via Femtosecond Laser Polishing (Adv. Mater. Technol. 22/2024) High-Throughput Microfluidic 3D Outer Blood-Retinal Barrier Model in a 96-Well Format: Analysis of Cellular Interactions and Barrier Function in Retinal Health and Disease (Adv. Mater. Technol. 22/2024)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1