用于高压可充电镁电池的离子液体共晶电解质的研究进展

IF 2.4 4区 化学 Q3 CHEMISTRY, PHYSICAL Ionics Pub Date : 2024-07-12 DOI:10.1007/s11581-024-05699-8
Raju Vadthya, Venkata Narendra Kumar Y, Vatsala Rani Jetti
{"title":"用于高压可充电镁电池的离子液体共晶电解质的研究进展","authors":"Raju Vadthya, Venkata Narendra Kumar Y, Vatsala Rani Jetti","doi":"10.1007/s11581-024-05699-8","DOIUrl":null,"url":null,"abstract":"<p>Rechargeable magnesium batteries (RMBs) represent a promising beyond-lithium technology for energy storage due to their high energy and power densities. However, developing suitable electrolytes compatible with both electrodes and exhibiting high thermal and electrochemical stabilities remains a significant challenge for RMBs. In this study, we present the development of a novel electrolyte for RMBs based on a eutectic mixture of 1-ethyl-3-methylimidazolium chloride and 1-ethyl-3-methylimidazolium hexafluorophosphate. This electrolyte demonstrates a high ionic conductivity of ~ 6.7 mS.cm<sup>−1</sup> at room temperature and a wide electrochemical stability window (&gt; 4.5 V vs. Mg/Mg<sup>2+</sup>). We demonstrate that the present electrolyte enables the reversible operation of an Mg-graphite cell with a discharge capacity of ~ 120 mAh.g<sup>−1</sup> for over 500 cycles while maintaining a Coulombic efficiency of &gt; 95%. Furthermore, the distinctive dual-ion transport behavior of the electrolyte is substantiated through the fabrication of a symmetric graphite cell, where both anions and cations exhibit bidirectional movement during the charge and discharge processes. This cell manifests an equivalent discharge capacity to that of Mg-graphite cells. These findings underscore the potential of further optimizing RMBs utilizing this electrolyte, offering prospects for superior energy density and enhanced performance across diverse application domains.</p>","PeriodicalId":599,"journal":{"name":"Ionics","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advances in ionic-liquid-based eutectic electrolyte for high voltage rechargeable magnesium batteries\",\"authors\":\"Raju Vadthya, Venkata Narendra Kumar Y, Vatsala Rani Jetti\",\"doi\":\"10.1007/s11581-024-05699-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Rechargeable magnesium batteries (RMBs) represent a promising beyond-lithium technology for energy storage due to their high energy and power densities. However, developing suitable electrolytes compatible with both electrodes and exhibiting high thermal and electrochemical stabilities remains a significant challenge for RMBs. In this study, we present the development of a novel electrolyte for RMBs based on a eutectic mixture of 1-ethyl-3-methylimidazolium chloride and 1-ethyl-3-methylimidazolium hexafluorophosphate. This electrolyte demonstrates a high ionic conductivity of ~ 6.7 mS.cm<sup>−1</sup> at room temperature and a wide electrochemical stability window (&gt; 4.5 V vs. Mg/Mg<sup>2+</sup>). We demonstrate that the present electrolyte enables the reversible operation of an Mg-graphite cell with a discharge capacity of ~ 120 mAh.g<sup>−1</sup> for over 500 cycles while maintaining a Coulombic efficiency of &gt; 95%. Furthermore, the distinctive dual-ion transport behavior of the electrolyte is substantiated through the fabrication of a symmetric graphite cell, where both anions and cations exhibit bidirectional movement during the charge and discharge processes. This cell manifests an equivalent discharge capacity to that of Mg-graphite cells. These findings underscore the potential of further optimizing RMBs utilizing this electrolyte, offering prospects for superior energy density and enhanced performance across diverse application domains.</p>\",\"PeriodicalId\":599,\"journal\":{\"name\":\"Ionics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ionics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s11581-024-05699-8\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ionics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11581-024-05699-8","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

可充电镁电池(RMB)具有高能量和高功率密度,是一种前景广阔的锂外储能技术。然而,开发与两种电极兼容并具有高热稳定性和电化学稳定性的合适电解质仍然是可充电镁电池面临的重大挑战。在本研究中,我们基于 1-乙基-3-甲基氯化咪唑和 1-乙基-3-甲基六氟磷酸盐的共晶混合物,开发了一种新型人民币电解质。这种电解质在室温下具有约 6.7 mS.cm-1 的高离子电导率和较宽的电化学稳定性窗口(> 4.5 V vs. Mg/Mg2+)。我们证明,目前的电解质可使镁-石墨电池在超过 500 个循环中以约 120 mAh.g-1 的放电容量可逆运行,同时库仑效率保持在 > 95%。此外,通过制造对称石墨电池,证实了电解质独特的双离子传输行为,其中阴离子和阳离子在充放电过程中均表现出双向运动。这种电池的放电能力与镁石墨电池相当。这些发现强调了利用这种电解质进一步优化人民币的潜力,为在不同应用领域实现更高的能量密度和更强的性能提供了前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Advances in ionic-liquid-based eutectic electrolyte for high voltage rechargeable magnesium batteries

Rechargeable magnesium batteries (RMBs) represent a promising beyond-lithium technology for energy storage due to their high energy and power densities. However, developing suitable electrolytes compatible with both electrodes and exhibiting high thermal and electrochemical stabilities remains a significant challenge for RMBs. In this study, we present the development of a novel electrolyte for RMBs based on a eutectic mixture of 1-ethyl-3-methylimidazolium chloride and 1-ethyl-3-methylimidazolium hexafluorophosphate. This electrolyte demonstrates a high ionic conductivity of ~ 6.7 mS.cm−1 at room temperature and a wide electrochemical stability window (> 4.5 V vs. Mg/Mg2+). We demonstrate that the present electrolyte enables the reversible operation of an Mg-graphite cell with a discharge capacity of ~ 120 mAh.g−1 for over 500 cycles while maintaining a Coulombic efficiency of > 95%. Furthermore, the distinctive dual-ion transport behavior of the electrolyte is substantiated through the fabrication of a symmetric graphite cell, where both anions and cations exhibit bidirectional movement during the charge and discharge processes. This cell manifests an equivalent discharge capacity to that of Mg-graphite cells. These findings underscore the potential of further optimizing RMBs utilizing this electrolyte, offering prospects for superior energy density and enhanced performance across diverse application domains.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ionics
Ionics 化学-电化学
CiteScore
5.30
自引率
7.10%
发文量
427
审稿时长
2.2 months
期刊介绍: Ionics is publishing original results in the fields of science and technology of ionic motion. This includes theoretical, experimental and practical work on electrolytes, electrode, ionic/electronic interfaces, ionic transport aspects of corrosion, galvanic cells, e.g. for thermodynamic and kinetic studies, batteries, fuel cells, sensors and electrochromics. Fast solid ionic conductors are presently providing new opportunities in view of several advantages, in addition to conventional liquid electrolytes.
期刊最新文献
Enhanced stability and electrochemical performance of O3-type NaNi1/3Fe1/3Mn1/3O2 cathode material via yttrium doping for advanced sodium-ion batteries Self-templated sacrificial strategy to construct nanorod array-like Co9S8 for high-performance asymmetric supercapacitors Designing NiCoS/CNTs composites for highly efficient bifunctional electrocatalyst in water splitting A simple and rapid batch injection analysis method with amperometric detection for determination of azithromycin in pharmaceutical tablets Synthesis and characterization of (Gd, Nd) co-doped ceramic materials (Gd0.1NdxCe0.9-xO2-δ x = 0.05, 0.10, 0.15) via polyol method using different hydrolysis ratios
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1