基于双Λ$\Lambda$自发四波混合过程的双光子源综述

IF 4.4 Q1 OPTICS Advanced quantum technologies Pub Date : 2024-07-10 DOI:10.1002/qute.202400138
Jia-Mou Chen, Thorsten Peters, Pei-Hsuan Hsieh, Ite A. Yu
{"title":"基于双Λ$\\Lambda$自发四波混合过程的双光子源综述","authors":"Jia-Mou Chen,&nbsp;Thorsten Peters,&nbsp;Pei-Hsuan Hsieh,&nbsp;Ite A. Yu","doi":"10.1002/qute.202400138","DOIUrl":null,"url":null,"abstract":"<p>This review article focuses on biphoton sources based on the double-<span></span><math>\n <semantics>\n <mi>Λ</mi>\n <annotation>$\\Lambda$</annotation>\n </semantics></math> spontaneous four-wave mixing (SFWM) process in laser-cooled as well as room-temperature or hot atomic ensembles. These biphoton sources have the advantage of providing stable frequencies, ultranarrow linewidths, and a tunability of the temporal biphoton width of more than one order of magnitude for high-bandwidth applications. Therefore, the generated photons can be efficiently interfaced to, e.g., atomic quantum memories. In contrast, solid-state biphoton sources typically require assistance by an optical cavity to operate at narrow linewidth that limits the tunability of the temporal width of the biphotons. Present state-of-the-art double-<span></span><math>\n <semantics>\n <mi>Λ</mi>\n <annotation>$\\Lambda$</annotation>\n </semantics></math> SFWM biphoton sources can achieve one of the following results: a spectral linewidth of 50 kHz (290 kHz) or a temporal width of 13 <span></span><math>\n <semantics>\n <mrow>\n <mi>μ</mi>\n <mi>s</mi>\n </mrow>\n <annotation>$\\umu {\\rm s}$</annotation>\n </semantics></math> (580 ns) with cold (hot) atoms, a detection rate of about 7<span></span><math>\n <semantics>\n <mrow>\n <mo>×</mo>\n <msup>\n <mn>10</mn>\n <mn>3</mn>\n </msup>\n </mrow>\n <annotation>$\\times 10^3$</annotation>\n </semantics></math> cps, and a generation rate of <span></span><math>\n <semantics>\n <msup>\n <mn>10</mn>\n <mn>7</mn>\n </msup>\n <annotation>$10^7$</annotation>\n </semantics></math> cps at a duty cycle of 0.4% or of <span></span><math>\n <semantics>\n <msup>\n <mn>10</mn>\n <mn>5</mn>\n </msup>\n <annotation>$10^5$</annotation>\n </semantics></math> cps in the steady state. The theoretical background of these biphoton sources, experimental implementations with cold and hot atoms, and progress over the years, will be illustrated.</p>","PeriodicalId":72073,"journal":{"name":"Advanced quantum technologies","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/qute.202400138","citationCount":"0","resultStr":"{\"title\":\"Review of Biphoton Sources Based on the Double-\\n \\n Λ\\n $\\\\Lambda$\\n Spontaneous Four-Wave Mixing Process\",\"authors\":\"Jia-Mou Chen,&nbsp;Thorsten Peters,&nbsp;Pei-Hsuan Hsieh,&nbsp;Ite A. Yu\",\"doi\":\"10.1002/qute.202400138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This review article focuses on biphoton sources based on the double-<span></span><math>\\n <semantics>\\n <mi>Λ</mi>\\n <annotation>$\\\\Lambda$</annotation>\\n </semantics></math> spontaneous four-wave mixing (SFWM) process in laser-cooled as well as room-temperature or hot atomic ensembles. These biphoton sources have the advantage of providing stable frequencies, ultranarrow linewidths, and a tunability of the temporal biphoton width of more than one order of magnitude for high-bandwidth applications. Therefore, the generated photons can be efficiently interfaced to, e.g., atomic quantum memories. In contrast, solid-state biphoton sources typically require assistance by an optical cavity to operate at narrow linewidth that limits the tunability of the temporal width of the biphotons. Present state-of-the-art double-<span></span><math>\\n <semantics>\\n <mi>Λ</mi>\\n <annotation>$\\\\Lambda$</annotation>\\n </semantics></math> SFWM biphoton sources can achieve one of the following results: a spectral linewidth of 50 kHz (290 kHz) or a temporal width of 13 <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>μ</mi>\\n <mi>s</mi>\\n </mrow>\\n <annotation>$\\\\umu {\\\\rm s}$</annotation>\\n </semantics></math> (580 ns) with cold (hot) atoms, a detection rate of about 7<span></span><math>\\n <semantics>\\n <mrow>\\n <mo>×</mo>\\n <msup>\\n <mn>10</mn>\\n <mn>3</mn>\\n </msup>\\n </mrow>\\n <annotation>$\\\\times 10^3$</annotation>\\n </semantics></math> cps, and a generation rate of <span></span><math>\\n <semantics>\\n <msup>\\n <mn>10</mn>\\n <mn>7</mn>\\n </msup>\\n <annotation>$10^7$</annotation>\\n </semantics></math> cps at a duty cycle of 0.4% or of <span></span><math>\\n <semantics>\\n <msup>\\n <mn>10</mn>\\n <mn>5</mn>\\n </msup>\\n <annotation>$10^5$</annotation>\\n </semantics></math> cps in the steady state. The theoretical background of these biphoton sources, experimental implementations with cold and hot atoms, and progress over the years, will be illustrated.</p>\",\"PeriodicalId\":72073,\"journal\":{\"name\":\"Advanced quantum technologies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/qute.202400138\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced quantum technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/qute.202400138\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced quantum technologies","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/qute.202400138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

这篇综述文章的重点是基于激光冷却以及室温或热原子集合中双自发四波混合(SFWM)过程的双光子源。这些双光子源的优点是频率稳定、线宽超窄,而且双光子的时间宽度可调,超过高带宽应用的一个数量级。因此,产生的光子可以有效地与原子量子存储器等连接。相比之下,固态双光子源通常需要光腔的辅助才能在窄线宽下工作,这就限制了双光子时宽的可调谐性。目前最先进的双 SFWM 双光子源可以达到以下结果之一:光谱线宽为 50 kHz(290 kHz),或冷原子(热原子)的时间宽度为 13(580 ns),探测率约为 7 cps,在占空比为 0.4% 时产生率为 cps,或在稳定状态下产生率为 cps。我们将说明这些双光子源的理论背景、冷原子和热原子的实验实施情况以及多年来取得的进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Review of Biphoton Sources Based on the Double- Λ $\Lambda$ Spontaneous Four-Wave Mixing Process

This review article focuses on biphoton sources based on the double- Λ $\Lambda$ spontaneous four-wave mixing (SFWM) process in laser-cooled as well as room-temperature or hot atomic ensembles. These biphoton sources have the advantage of providing stable frequencies, ultranarrow linewidths, and a tunability of the temporal biphoton width of more than one order of magnitude for high-bandwidth applications. Therefore, the generated photons can be efficiently interfaced to, e.g., atomic quantum memories. In contrast, solid-state biphoton sources typically require assistance by an optical cavity to operate at narrow linewidth that limits the tunability of the temporal width of the biphotons. Present state-of-the-art double- Λ $\Lambda$ SFWM biphoton sources can achieve one of the following results: a spectral linewidth of 50 kHz (290 kHz) or a temporal width of 13  μ s $\umu {\rm s}$ (580 ns) with cold (hot) atoms, a detection rate of about 7 × 10 3 $\times 10^3$ cps, and a generation rate of 10 7 $10^7$ cps at a duty cycle of 0.4% or of 10 5 $10^5$ cps in the steady state. The theoretical background of these biphoton sources, experimental implementations with cold and hot atoms, and progress over the years, will be illustrated.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.90
自引率
0.00%
发文量
0
期刊最新文献
Back Cover: Universal Quantum Fisher Information and Simultaneous Occurrence of Landau-Class and Topological-Class Transitions in Non-Hermitian Jaynes-Cummings Models (Adv. Quantum Technol. 10/2024) Front Cover: Solid-State Qubit as an On-Chip Controller for Non-Classical Field States (Adv. Quantum Technol. 10/2024) Inside Front Cover: Nonlinear Effect Analysis and Sensitivity Improvement in Spin Exchange Relaxation Free Atomic Magnetometers (Adv. Quantum Technol. 10/2024) Issue Information (Adv. Quantum Technol. 10/2024) Front Cover: Superconducting Diode Effect in a Constricted Nanowire (Adv. Quantum Technol. 9/2024)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1