{"title":"掺氟氧化锡上蒸发钛层形成的开顶透明二氧化钛纳米管光阳极","authors":"Imgon Hwang, Patrik Schmuki, Anca Mazare","doi":"10.1002/pssa.202400335","DOIUrl":null,"url":null,"abstract":"Herein, the growth of transparent TiO<jats:sub>2</jats:sub> nanotube (NT) layers is investigated by complete self‐organized anodization of a metallic Ti layer on fluorine‐doped tin oxide glass, deposited by electron beam evaporation. An initiation‐free open‐top tube morphology can be obtained for such transparent TiO<jats:sub>2</jats:sub> NTs using an optimized second anodization approach combined with a post‐ultrasonication process. The photoelectrochemical properties of open‐top tubes exhibit notable enhancement, primarily attributed to their rapid electron‐transfer kinetics, with a ≈33% increase in the incident‐photon‐to‐electron conversion efficiency value (at 350 nm wavelength) in comparison to classical (initiation‐covered) NTs with a comparable morphology.","PeriodicalId":20074,"journal":{"name":"Physica Status Solidi A-applications and Materials Science","volume":"2012 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Open‐Top Transparent TiO2 Nanotubes Photoanodes from Evaporated Ti Layers on Fluorine‐Doped Tin Oxide\",\"authors\":\"Imgon Hwang, Patrik Schmuki, Anca Mazare\",\"doi\":\"10.1002/pssa.202400335\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Herein, the growth of transparent TiO<jats:sub>2</jats:sub> nanotube (NT) layers is investigated by complete self‐organized anodization of a metallic Ti layer on fluorine‐doped tin oxide glass, deposited by electron beam evaporation. An initiation‐free open‐top tube morphology can be obtained for such transparent TiO<jats:sub>2</jats:sub> NTs using an optimized second anodization approach combined with a post‐ultrasonication process. The photoelectrochemical properties of open‐top tubes exhibit notable enhancement, primarily attributed to their rapid electron‐transfer kinetics, with a ≈33% increase in the incident‐photon‐to‐electron conversion efficiency value (at 350 nm wavelength) in comparison to classical (initiation‐covered) NTs with a comparable morphology.\",\"PeriodicalId\":20074,\"journal\":{\"name\":\"Physica Status Solidi A-applications and Materials Science\",\"volume\":\"2012 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica Status Solidi A-applications and Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/pssa.202400335\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica Status Solidi A-applications and Materials Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/pssa.202400335","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Open‐Top Transparent TiO2 Nanotubes Photoanodes from Evaporated Ti Layers on Fluorine‐Doped Tin Oxide
Herein, the growth of transparent TiO2 nanotube (NT) layers is investigated by complete self‐organized anodization of a metallic Ti layer on fluorine‐doped tin oxide glass, deposited by electron beam evaporation. An initiation‐free open‐top tube morphology can be obtained for such transparent TiO2 NTs using an optimized second anodization approach combined with a post‐ultrasonication process. The photoelectrochemical properties of open‐top tubes exhibit notable enhancement, primarily attributed to their rapid electron‐transfer kinetics, with a ≈33% increase in the incident‐photon‐to‐electron conversion efficiency value (at 350 nm wavelength) in comparison to classical (initiation‐covered) NTs with a comparable morphology.
期刊介绍:
The physica status solidi (pss) journal group is devoted to the thorough peer review and the rapid publication of new and important results in all fields of solid state and materials physics, from basic science to applications and devices. Among the largest and most established international publications, the pss journals publish reviews, letters and original articles, as regular content as well as in special issues and topical sections.