Sungwon Hwang, Guo Xian, Donghyeon Choi, Jimin Nam, Sang Myung Cho, Jong-Taek Yeom, Namhyun Kang
{"title":"利用线弧增材制造和层间强化沉积的 Ti-6Al-4V 和 Ti-6Al-2Sn-2Zr-2Mo-2Cr 合金的微观结构和拉伸各向同性的增强","authors":"Sungwon Hwang, Guo Xian, Donghyeon Choi, Jimin Nam, Sang Myung Cho, Jong-Taek Yeom, Namhyun Kang","doi":"10.1007/s12540-024-01735-4","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The wire arc additive manufacturing (WAAM) deposition of Ti–6Al–4V (Ti64) and Ti–6Al–2Sn–2Zr–2Mo–2Cr (Ti62222) alloys produce long columnar grains, indicating tensile anisotropy in various directions. Therefore, this study applied interlayer peening (ILP) during WAAM to modify the solidification morphology. The index of plane anisotropy (IPA) of the as-built Ti64 deposit was 30%, whereas that of the ILP Ti64 alloy was 1%, indicating the significant effect on modifying the solidification morphology and reducing the IPA of the Ti64 deposit. However, the IPA of the as-built Ti62222 alloy was 79%, whereas that of the ILP Ti62222 alloy was 72%, indicating anisotropy in the mechanical properties despite the ILP process. In Ti64 alloy, ILP resulted in larger D<sub>ILP</sub> (3.2 mm) than D<sub>remelt</sub> (1.87 mm), which impeded the growth of columnar β grains and nucleated the equiaxed β grains during subsequent layer deposition. However, in Ti62222 alloy, owing to its higher hardness and Yield Strength, D<sub>ILP</sub> (2.2 mm) and D<sub>remelt</sub> (1.97 mm) were approximately the same, thus allowing the growth of columnar β grains to continue during subsequent layer deposition.</p><h3 data-test=\"abstract-sub-heading\">Graphic Abstract</h3>","PeriodicalId":703,"journal":{"name":"Metals and Materials International","volume":"328 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancement of Microstructural and Tensile Isotropy for Ti–6Al–4V and Ti–6Al–2Sn–2Zr–2Mo–2Cr Alloys Deposited with Wire Arc Additive Manufacturing and Interlayer Peening\",\"authors\":\"Sungwon Hwang, Guo Xian, Donghyeon Choi, Jimin Nam, Sang Myung Cho, Jong-Taek Yeom, Namhyun Kang\",\"doi\":\"10.1007/s12540-024-01735-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>The wire arc additive manufacturing (WAAM) deposition of Ti–6Al–4V (Ti64) and Ti–6Al–2Sn–2Zr–2Mo–2Cr (Ti62222) alloys produce long columnar grains, indicating tensile anisotropy in various directions. Therefore, this study applied interlayer peening (ILP) during WAAM to modify the solidification morphology. The index of plane anisotropy (IPA) of the as-built Ti64 deposit was 30%, whereas that of the ILP Ti64 alloy was 1%, indicating the significant effect on modifying the solidification morphology and reducing the IPA of the Ti64 deposit. However, the IPA of the as-built Ti62222 alloy was 79%, whereas that of the ILP Ti62222 alloy was 72%, indicating anisotropy in the mechanical properties despite the ILP process. In Ti64 alloy, ILP resulted in larger D<sub>ILP</sub> (3.2 mm) than D<sub>remelt</sub> (1.87 mm), which impeded the growth of columnar β grains and nucleated the equiaxed β grains during subsequent layer deposition. However, in Ti62222 alloy, owing to its higher hardness and Yield Strength, D<sub>ILP</sub> (2.2 mm) and D<sub>remelt</sub> (1.97 mm) were approximately the same, thus allowing the growth of columnar β grains to continue during subsequent layer deposition.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphic Abstract</h3>\",\"PeriodicalId\":703,\"journal\":{\"name\":\"Metals and Materials International\",\"volume\":\"328 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metals and Materials International\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s12540-024-01735-4\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metals and Materials International","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s12540-024-01735-4","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Enhancement of Microstructural and Tensile Isotropy for Ti–6Al–4V and Ti–6Al–2Sn–2Zr–2Mo–2Cr Alloys Deposited with Wire Arc Additive Manufacturing and Interlayer Peening
Abstract
The wire arc additive manufacturing (WAAM) deposition of Ti–6Al–4V (Ti64) and Ti–6Al–2Sn–2Zr–2Mo–2Cr (Ti62222) alloys produce long columnar grains, indicating tensile anisotropy in various directions. Therefore, this study applied interlayer peening (ILP) during WAAM to modify the solidification morphology. The index of plane anisotropy (IPA) of the as-built Ti64 deposit was 30%, whereas that of the ILP Ti64 alloy was 1%, indicating the significant effect on modifying the solidification morphology and reducing the IPA of the Ti64 deposit. However, the IPA of the as-built Ti62222 alloy was 79%, whereas that of the ILP Ti62222 alloy was 72%, indicating anisotropy in the mechanical properties despite the ILP process. In Ti64 alloy, ILP resulted in larger DILP (3.2 mm) than Dremelt (1.87 mm), which impeded the growth of columnar β grains and nucleated the equiaxed β grains during subsequent layer deposition. However, in Ti62222 alloy, owing to its higher hardness and Yield Strength, DILP (2.2 mm) and Dremelt (1.97 mm) were approximately the same, thus allowing the growth of columnar β grains to continue during subsequent layer deposition.
期刊介绍:
Metals and Materials International publishes original papers and occasional critical reviews on all aspects of research and technology in materials engineering: physical metallurgy, materials science, and processing of metals and other materials. Emphasis is placed on those aspects of the science of materials that are concerned with the relationships among the processing, structure and properties (mechanical, chemical, electrical, electrochemical, magnetic and optical) of materials. Aspects of processing include the melting, casting, and fabrication with the thermodynamics, kinetics and modeling.