{"title":"Dcaro:针对高能效 UASN 的动态集群形成和 AUV 辅助路由优化","authors":"Kammula Sunil Kumar, Deepak Singh, Veena Anand","doi":"10.1007/s12083-024-01756-1","DOIUrl":null,"url":null,"abstract":"<p>In Underwater Acoustic Sensor Networks (UASNs), optimizing energy efficiency and minimizing void occurrences in routing is paramount. Due to the energy constraints of sensor nodes, low-power transmission is essential for conserving energy. Previous research highlighted the effectiveness of clustering and routing to enhance energy efficacy in UASNs. Therefore, the clustering and routing processes can be considered as optimization problems that are nondeterministic polynomial-time (NP) hard. These challenges can be tackled through the application of machine learning algorithms and meta-heuristics. In this context, K-means clustering is employed to partition the network into clusters, designating the centroid as an ideal Cluster Head (CH) location. This ensures a one-hop proximity between the CH and cluster members, reducing transmitting power and enhancing network energy efficiency. Subsequently, a potential CH is selected using a marine predator optimization (MPA) algorithm based on the derived multi-objective fitness function. The MPA algorithm not only determines the optimal CH but also moves the elected CH to the K-means centroid location. Consequently, Autonomous Underwater Vehicles (AUVs) are utilized to collect and route packets from the CH to the Base Station (BS), minimizing the occurrence of void nodes and avoiding obstacle collisions. An optimal routing path for AUV is established through a way-point-based navigation scheme to achieve high packet reliability. Additionally, the proposed method (DCARo) dynamically determines the optimal number of clusters using the elbow method, ensuring scalability according to network size. Extensive simulations affirm the superiority of the DCARo across various performance metrics.</p>","PeriodicalId":49313,"journal":{"name":"Peer-To-Peer Networking and Applications","volume":"247 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dcaro: Dynamic cluster formation and AUV-aided routing optimization for energy-efficient UASNs\",\"authors\":\"Kammula Sunil Kumar, Deepak Singh, Veena Anand\",\"doi\":\"10.1007/s12083-024-01756-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In Underwater Acoustic Sensor Networks (UASNs), optimizing energy efficiency and minimizing void occurrences in routing is paramount. Due to the energy constraints of sensor nodes, low-power transmission is essential for conserving energy. Previous research highlighted the effectiveness of clustering and routing to enhance energy efficacy in UASNs. Therefore, the clustering and routing processes can be considered as optimization problems that are nondeterministic polynomial-time (NP) hard. These challenges can be tackled through the application of machine learning algorithms and meta-heuristics. In this context, K-means clustering is employed to partition the network into clusters, designating the centroid as an ideal Cluster Head (CH) location. This ensures a one-hop proximity between the CH and cluster members, reducing transmitting power and enhancing network energy efficiency. Subsequently, a potential CH is selected using a marine predator optimization (MPA) algorithm based on the derived multi-objective fitness function. The MPA algorithm not only determines the optimal CH but also moves the elected CH to the K-means centroid location. Consequently, Autonomous Underwater Vehicles (AUVs) are utilized to collect and route packets from the CH to the Base Station (BS), minimizing the occurrence of void nodes and avoiding obstacle collisions. An optimal routing path for AUV is established through a way-point-based navigation scheme to achieve high packet reliability. Additionally, the proposed method (DCARo) dynamically determines the optimal number of clusters using the elbow method, ensuring scalability according to network size. Extensive simulations affirm the superiority of the DCARo across various performance metrics.</p>\",\"PeriodicalId\":49313,\"journal\":{\"name\":\"Peer-To-Peer Networking and Applications\",\"volume\":\"247 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Peer-To-Peer Networking and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s12083-024-01756-1\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Peer-To-Peer Networking and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s12083-024-01756-1","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Dcaro: Dynamic cluster formation and AUV-aided routing optimization for energy-efficient UASNs
In Underwater Acoustic Sensor Networks (UASNs), optimizing energy efficiency and minimizing void occurrences in routing is paramount. Due to the energy constraints of sensor nodes, low-power transmission is essential for conserving energy. Previous research highlighted the effectiveness of clustering and routing to enhance energy efficacy in UASNs. Therefore, the clustering and routing processes can be considered as optimization problems that are nondeterministic polynomial-time (NP) hard. These challenges can be tackled through the application of machine learning algorithms and meta-heuristics. In this context, K-means clustering is employed to partition the network into clusters, designating the centroid as an ideal Cluster Head (CH) location. This ensures a one-hop proximity between the CH and cluster members, reducing transmitting power and enhancing network energy efficiency. Subsequently, a potential CH is selected using a marine predator optimization (MPA) algorithm based on the derived multi-objective fitness function. The MPA algorithm not only determines the optimal CH but also moves the elected CH to the K-means centroid location. Consequently, Autonomous Underwater Vehicles (AUVs) are utilized to collect and route packets from the CH to the Base Station (BS), minimizing the occurrence of void nodes and avoiding obstacle collisions. An optimal routing path for AUV is established through a way-point-based navigation scheme to achieve high packet reliability. Additionally, the proposed method (DCARo) dynamically determines the optimal number of clusters using the elbow method, ensuring scalability according to network size. Extensive simulations affirm the superiority of the DCARo across various performance metrics.
期刊介绍:
The aim of the Peer-to-Peer Networking and Applications journal is to disseminate state-of-the-art research and development results in this rapidly growing research area, to facilitate the deployment of P2P networking and applications, and to bring together the academic and industry communities, with the goal of fostering interaction to promote further research interests and activities, thus enabling new P2P applications and services. The journal not only addresses research topics related to networking and communications theory, but also considers the standardization, economic, and engineering aspects of P2P technologies, and their impacts on software engineering, computer engineering, networked communication, and security.
The journal serves as a forum for tackling the technical problems arising from both file sharing and media streaming applications. It also includes state-of-the-art technologies in the P2P security domain.
Peer-to-Peer Networking and Applications publishes regular papers, tutorials and review papers, case studies, and correspondence from the research, development, and standardization communities. Papers addressing system, application, and service issues are encouraged.