探索结蛋白的电子结构:两个鸟氨酸转氨酶家族的案例。

IF 2.1 4区 化学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Molecular Modeling Pub Date : 2024-07-15 DOI:10.1007/s00894-024-06009-9
José Cícero Alves Silva, Igor Barden Grillo, Gabriel A. Urquiza-Carvalho, Gerd Bruno Rocha
{"title":"探索结蛋白的电子结构:两个鸟氨酸转氨酶家族的案例。","authors":"José Cícero Alves Silva,&nbsp;Igor Barden Grillo,&nbsp;Gabriel A. Urquiza-Carvalho,&nbsp;Gerd Bruno Rocha","doi":"10.1007/s00894-024-06009-9","DOIUrl":null,"url":null,"abstract":"<div><h3>Context:</h3><p>Geometrical knots are rare structural arrangements in proteins in which the polypeptide chain ties itself into a knot, which is very intriguing due to the uncertainty of their impact on the protein properties. Presently, classical molecular dynamics is the most employed technique in the few studies found on this topic, so any information on how the presence of knots affects the reactivity and electronic properties of proteins is even scarcer. Using the electronic structure methods and quantum chemical descriptors analysis, we found that the same amino-acid residues in the knot core have statistically larger values for the unknotted protein, for both hard-hard and soft-soft interaction descriptors. In addition, we present a computationally feasible protocol, where we show it is possible to separate the contribution of the geometrical knot to the reactivity and other electronic structure properties.</p><h3>Methods:</h3><p>In order to investigate these systems, we used PRIMoRDiA, a new software developed by our research group, to explore the electronic structure of biological macromolecules. We evaluated several local quantum chemical descriptors to unveil relevant patterns potentially originating from the presence of the geometrical knot in two proteins, belonging to the ornithine transcarbamylase family. We compared several sampled structures from these two enzymes that are highly similar in both tertiary structure and function, but one of them has a knot whereas the other does not. The sampling was carried out through molecular dynamics simulations using ff14SB force field along 50 ns, and the semiempirical convergence was performed with PM7 Hamiltonian.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><img></picture></div></div></figure></div></div>","PeriodicalId":651,"journal":{"name":"Journal of Molecular Modeling","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the electronic structure of knotted proteins: the case of two ornithine transcarbamylase family\",\"authors\":\"José Cícero Alves Silva,&nbsp;Igor Barden Grillo,&nbsp;Gabriel A. Urquiza-Carvalho,&nbsp;Gerd Bruno Rocha\",\"doi\":\"10.1007/s00894-024-06009-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Context:</h3><p>Geometrical knots are rare structural arrangements in proteins in which the polypeptide chain ties itself into a knot, which is very intriguing due to the uncertainty of their impact on the protein properties. Presently, classical molecular dynamics is the most employed technique in the few studies found on this topic, so any information on how the presence of knots affects the reactivity and electronic properties of proteins is even scarcer. Using the electronic structure methods and quantum chemical descriptors analysis, we found that the same amino-acid residues in the knot core have statistically larger values for the unknotted protein, for both hard-hard and soft-soft interaction descriptors. In addition, we present a computationally feasible protocol, where we show it is possible to separate the contribution of the geometrical knot to the reactivity and other electronic structure properties.</p><h3>Methods:</h3><p>In order to investigate these systems, we used PRIMoRDiA, a new software developed by our research group, to explore the electronic structure of biological macromolecules. We evaluated several local quantum chemical descriptors to unveil relevant patterns potentially originating from the presence of the geometrical knot in two proteins, belonging to the ornithine transcarbamylase family. We compared several sampled structures from these two enzymes that are highly similar in both tertiary structure and function, but one of them has a knot whereas the other does not. The sampling was carried out through molecular dynamics simulations using ff14SB force field along 50 ns, and the semiempirical convergence was performed with PM7 Hamiltonian.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><img></picture></div></div></figure></div></div>\",\"PeriodicalId\":651,\"journal\":{\"name\":\"Journal of Molecular Modeling\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Modeling\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00894-024-06009-9\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Modeling","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00894-024-06009-9","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:几何结是蛋白质中一种罕见的结构排列方式,在这种排列方式中,多肽链将自身打成一个结,由于其对蛋白质性质的影响尚不确定,因此非常引人关注。目前,在为数不多的相关研究中,经典分子动力学是最常用的技术,因此关于结的存在如何影响蛋白质的反应性和电子特性的信息更是少之又少。利用电子结构方法和量子化学描述符分析,我们发现,在硬-硬和软-软相互作用描述符方面,结核核心中的相同氨基酸残基在统计学上对未打结蛋白质的影响值更大。此外,我们还提出了一种计算上可行的方案,表明有可能将几何结对反应性和其他电子结构特性的贡献区分开来:为了研究这些系统,我们使用了我们研究小组开发的新软件 PRIMoRDiA 来探索生物大分子的电子结构。我们评估了几种局部量子化学描述因子,揭示了可能源于两种蛋白质(属于鸟氨酸转氨酶家族)中存在的几何结的相关模式。我们比较了这两种酶的几种抽样结构,它们在三级结构和功能上都非常相似,但其中一种酶有一个结,而另一种酶没有。我们使用ff14SB力场进行了分子动力学模拟,取样时间为50ns,并使用PM7哈密顿进行了半经验收敛。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exploring the electronic structure of knotted proteins: the case of two ornithine transcarbamylase family

Context:

Geometrical knots are rare structural arrangements in proteins in which the polypeptide chain ties itself into a knot, which is very intriguing due to the uncertainty of their impact on the protein properties. Presently, classical molecular dynamics is the most employed technique in the few studies found on this topic, so any information on how the presence of knots affects the reactivity and electronic properties of proteins is even scarcer. Using the electronic structure methods and quantum chemical descriptors analysis, we found that the same amino-acid residues in the knot core have statistically larger values for the unknotted protein, for both hard-hard and soft-soft interaction descriptors. In addition, we present a computationally feasible protocol, where we show it is possible to separate the contribution of the geometrical knot to the reactivity and other electronic structure properties.

Methods:

In order to investigate these systems, we used PRIMoRDiA, a new software developed by our research group, to explore the electronic structure of biological macromolecules. We evaluated several local quantum chemical descriptors to unveil relevant patterns potentially originating from the presence of the geometrical knot in two proteins, belonging to the ornithine transcarbamylase family. We compared several sampled structures from these two enzymes that are highly similar in both tertiary structure and function, but one of them has a knot whereas the other does not. The sampling was carried out through molecular dynamics simulations using ff14SB force field along 50 ns, and the semiempirical convergence was performed with PM7 Hamiltonian.

Graphical abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Molecular Modeling
Journal of Molecular Modeling 化学-化学综合
CiteScore
3.50
自引率
4.50%
发文量
362
审稿时长
2.9 months
期刊介绍: The Journal of Molecular Modeling focuses on "hardcore" modeling, publishing high-quality research and reports. Founded in 1995 as a purely electronic journal, it has adapted its format to include a full-color print edition, and adjusted its aims and scope fit the fast-changing field of molecular modeling, with a particular focus on three-dimensional modeling. Today, the journal covers all aspects of molecular modeling including life science modeling; materials modeling; new methods; and computational chemistry. Topics include computer-aided molecular design; rational drug design, de novo ligand design, receptor modeling and docking; cheminformatics, data analysis, visualization and mining; computational medicinal chemistry; homology modeling; simulation of peptides, DNA and other biopolymers; quantitative structure-activity relationships (QSAR) and ADME-modeling; modeling of biological reaction mechanisms; and combined experimental and computational studies in which calculations play a major role.
期刊最新文献
Exploring blood-brain barrier passage using atomic weighted vector and machine learning. Towards improving the characteristics of high-energy pyrazines and their N-oxides. A head-to-head comparison of MM/PBSA and MM/GBSA in predicting binding affinities for the CB1 cannabinoid ligands. Effect of triangular pits on the mechanical behavior of 2D MoTe2: a molecular dynamics study. Pharmacophore-based 3D-QSAR modeling, virtual screening, docking, molecular dynamics and biological evaluation studies for identification of potential inhibitors of alpha-glucosidase
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1