{"title":"暴露于三甲基氯化锡可通过氧化应激激活 NF-κB 通路,诱导草鱼 CIK 细胞发生脓毒症和免疫功能障碍","authors":"Xiaotong Ni, Haozheng Hong, Haotian Xu, Meng Qi, Shiwen Xu","doi":"10.1002/tox.24371","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Trimethyltin chloride (TMT) is a highly toxic organotin pollutant frequently found in aquatic environments, posing a significant threat to the ecological system. The kidney plays a vital role in the body's detoxification processes, and TMT present in the environment tends to accumulate in the kidneys. However, it remained unclear whether exposure to different doses of TMT could induce pyroptosis and immune dysfunction in grass carp kidney cells (CIK cells). For this purpose, after assessing the half-maximal inhibitory concentration (IC50) of TMT on CIK cells, we established a model for exposure of CIK cells at varying concentrations of TMT. CIK cells were treated with various doses of TMT (2.5, 5, 10 μM) for 24 h. Oxidative stress levels were measured using kits and fluorescence methods, whereas the expression of related genes was verified through western blot and quantitative real-time PCR (qRT-PCR). The results indicated that TMT exposure led to oxidative stress, with increased levels of ROS, H<sub>2</sub>O<sub>2</sub>, MDA, and GSH, and inhibited activities of T-AOC, SOD, and CAT. It activated the NF-κB pathway, leading to the upregulation of NF-κB p65, NF-κB p50, GSDMD, NLRP3, ASC, and Caspase-1. Furthermore, TMT exposure also resulted in increased expression of cytokines (IL-18, IL-6, IL-2, IL-1β, and TNF-α) and decreased expression of antimicrobial peptides (LEAP2, HEPC, and β-defensin). In summary, exposure to TMT induces dose-dependent oxidative stress that activates the NF-κB pathway, leading to pyroptosis and immune dysfunction in grass carp CIK cells.</p>\n </div>","PeriodicalId":11756,"journal":{"name":"Environmental Toxicology","volume":"39 11","pages":"4984-4994"},"PeriodicalIF":4.4000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exposure to Trimethyltin Chloride Induces Pyroptosis and Immune Dysfunction in Grass Carp CIK Cells by Activating the NF-κB Pathway Through Oxidative Stress\",\"authors\":\"Xiaotong Ni, Haozheng Hong, Haotian Xu, Meng Qi, Shiwen Xu\",\"doi\":\"10.1002/tox.24371\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Trimethyltin chloride (TMT) is a highly toxic organotin pollutant frequently found in aquatic environments, posing a significant threat to the ecological system. The kidney plays a vital role in the body's detoxification processes, and TMT present in the environment tends to accumulate in the kidneys. However, it remained unclear whether exposure to different doses of TMT could induce pyroptosis and immune dysfunction in grass carp kidney cells (CIK cells). For this purpose, after assessing the half-maximal inhibitory concentration (IC50) of TMT on CIK cells, we established a model for exposure of CIK cells at varying concentrations of TMT. CIK cells were treated with various doses of TMT (2.5, 5, 10 μM) for 24 h. Oxidative stress levels were measured using kits and fluorescence methods, whereas the expression of related genes was verified through western blot and quantitative real-time PCR (qRT-PCR). The results indicated that TMT exposure led to oxidative stress, with increased levels of ROS, H<sub>2</sub>O<sub>2</sub>, MDA, and GSH, and inhibited activities of T-AOC, SOD, and CAT. It activated the NF-κB pathway, leading to the upregulation of NF-κB p65, NF-κB p50, GSDMD, NLRP3, ASC, and Caspase-1. Furthermore, TMT exposure also resulted in increased expression of cytokines (IL-18, IL-6, IL-2, IL-1β, and TNF-α) and decreased expression of antimicrobial peptides (LEAP2, HEPC, and β-defensin). In summary, exposure to TMT induces dose-dependent oxidative stress that activates the NF-κB pathway, leading to pyroptosis and immune dysfunction in grass carp CIK cells.</p>\\n </div>\",\"PeriodicalId\":11756,\"journal\":{\"name\":\"Environmental Toxicology\",\"volume\":\"39 11\",\"pages\":\"4984-4994\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/tox.24371\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Toxicology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/tox.24371","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Exposure to Trimethyltin Chloride Induces Pyroptosis and Immune Dysfunction in Grass Carp CIK Cells by Activating the NF-κB Pathway Through Oxidative Stress
Trimethyltin chloride (TMT) is a highly toxic organotin pollutant frequently found in aquatic environments, posing a significant threat to the ecological system. The kidney plays a vital role in the body's detoxification processes, and TMT present in the environment tends to accumulate in the kidneys. However, it remained unclear whether exposure to different doses of TMT could induce pyroptosis and immune dysfunction in grass carp kidney cells (CIK cells). For this purpose, after assessing the half-maximal inhibitory concentration (IC50) of TMT on CIK cells, we established a model for exposure of CIK cells at varying concentrations of TMT. CIK cells were treated with various doses of TMT (2.5, 5, 10 μM) for 24 h. Oxidative stress levels were measured using kits and fluorescence methods, whereas the expression of related genes was verified through western blot and quantitative real-time PCR (qRT-PCR). The results indicated that TMT exposure led to oxidative stress, with increased levels of ROS, H2O2, MDA, and GSH, and inhibited activities of T-AOC, SOD, and CAT. It activated the NF-κB pathway, leading to the upregulation of NF-κB p65, NF-κB p50, GSDMD, NLRP3, ASC, and Caspase-1. Furthermore, TMT exposure also resulted in increased expression of cytokines (IL-18, IL-6, IL-2, IL-1β, and TNF-α) and decreased expression of antimicrobial peptides (LEAP2, HEPC, and β-defensin). In summary, exposure to TMT induces dose-dependent oxidative stress that activates the NF-κB pathway, leading to pyroptosis and immune dysfunction in grass carp CIK cells.
期刊介绍:
The journal publishes in the areas of toxicity and toxicology of environmental pollutants in air, dust, sediment, soil and water, and natural toxins in the environment.Of particular interest are:
Toxic or biologically disruptive impacts of anthropogenic chemicals such as pharmaceuticals, industrial organics, agricultural chemicals, and by-products such as chlorinated compounds from water disinfection and waste incineration;
Natural toxins and their impacts;
Biotransformation and metabolism of toxigenic compounds, food chains for toxin accumulation or biodegradation;
Assays of toxicity, endocrine disruption, mutagenicity, carcinogenicity, ecosystem impact and health hazard;
Environmental and public health risk assessment, environmental guidelines, environmental policy for toxicants.