Carlos Navarrete-León, P Stephen Patrick, Adam Doherty, Harry Allan, Silvia Cipiccia, Shashidhara Marathe, Kaz Wanelik, Michela Esposito, Charlotte K Hagen, Alessandro Olivo, Marco Endrizzi
{"title":"通过双向光束跟踪同步加速器装置对软组织进行高角灵敏度 X 射线相位对比显微层析成像。","authors":"Carlos Navarrete-León, P Stephen Patrick, Adam Doherty, Harry Allan, Silvia Cipiccia, Shashidhara Marathe, Kaz Wanelik, Michela Esposito, Charlotte K Hagen, Alessandro Olivo, Marco Endrizzi","doi":"10.1107/S1600577524005034","DOIUrl":null,"url":null,"abstract":"<p><p>Two-directional beam-tracking (2DBT) is a method for phase-contrast imaging and tomography that uses an intensity modulator to structure the X-ray beam into an array of independent circular beamlets that are resolved by a high-resolution detector. It features isotropic spatial resolution, provides two-dimensional phase sensitivity, and enables the three-dimensional reconstructions of the refractive index decrement, δ, and the attenuation coefficient, μ. In this work, the angular sensitivity and the spatial resolution of 2DBT images in a synchrotron-based implementation is reported. In its best configuration, angular sensitivities of ∼20 nrad and spatial resolution of at least 6.25 µm in phase-contrast images were obtained. Exemplar application to the three-dimensional imaging of soft tissue samples, including a mouse liver and a decellularized porcine dermis, is also demonstrated.</p>","PeriodicalId":48729,"journal":{"name":"Journal of Synchrotron Radiation","volume":" ","pages":"1293-1298"},"PeriodicalIF":2.5000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11371031/pdf/","citationCount":"0","resultStr":"{\"title\":\"High-angular-sensitivity X-ray phase-contrast microtomography of soft tissue through a two-directional beam-tracking synchrotron set-up.\",\"authors\":\"Carlos Navarrete-León, P Stephen Patrick, Adam Doherty, Harry Allan, Silvia Cipiccia, Shashidhara Marathe, Kaz Wanelik, Michela Esposito, Charlotte K Hagen, Alessandro Olivo, Marco Endrizzi\",\"doi\":\"10.1107/S1600577524005034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Two-directional beam-tracking (2DBT) is a method for phase-contrast imaging and tomography that uses an intensity modulator to structure the X-ray beam into an array of independent circular beamlets that are resolved by a high-resolution detector. It features isotropic spatial resolution, provides two-dimensional phase sensitivity, and enables the three-dimensional reconstructions of the refractive index decrement, δ, and the attenuation coefficient, μ. In this work, the angular sensitivity and the spatial resolution of 2DBT images in a synchrotron-based implementation is reported. In its best configuration, angular sensitivities of ∼20 nrad and spatial resolution of at least 6.25 µm in phase-contrast images were obtained. Exemplar application to the three-dimensional imaging of soft tissue samples, including a mouse liver and a decellularized porcine dermis, is also demonstrated.</p>\",\"PeriodicalId\":48729,\"journal\":{\"name\":\"Journal of Synchrotron Radiation\",\"volume\":\" \",\"pages\":\"1293-1298\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11371031/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Synchrotron Radiation\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1107/S1600577524005034\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Synchrotron Radiation","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1107/S1600577524005034","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/15 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
双向光束跟踪(2DBT)是一种用于相位对比成像和断层扫描的方法,它使用强度调制器将 X 射线束构造成独立的圆形小光束阵列,并由高分辨率探测器进行分辨。它具有各向同性的空间分辨率,提供二维相位灵敏度,并能对折射率下降值δ和衰减系数μ进行三维重建。在最佳配置下,相位对比图像的角度灵敏度为 20 nrad,空间分辨率至少为 6.25 µm。此外,还展示了对软组织样本(包括小鼠肝脏和脱细胞猪真皮)进行三维成像的示例应用。
High-angular-sensitivity X-ray phase-contrast microtomography of soft tissue through a two-directional beam-tracking synchrotron set-up.
Two-directional beam-tracking (2DBT) is a method for phase-contrast imaging and tomography that uses an intensity modulator to structure the X-ray beam into an array of independent circular beamlets that are resolved by a high-resolution detector. It features isotropic spatial resolution, provides two-dimensional phase sensitivity, and enables the three-dimensional reconstructions of the refractive index decrement, δ, and the attenuation coefficient, μ. In this work, the angular sensitivity and the spatial resolution of 2DBT images in a synchrotron-based implementation is reported. In its best configuration, angular sensitivities of ∼20 nrad and spatial resolution of at least 6.25 µm in phase-contrast images were obtained. Exemplar application to the three-dimensional imaging of soft tissue samples, including a mouse liver and a decellularized porcine dermis, is also demonstrated.
期刊介绍:
Synchrotron radiation research is rapidly expanding with many new sources of radiation being created globally. Synchrotron radiation plays a leading role in pure science and in emerging technologies. The Journal of Synchrotron Radiation provides comprehensive coverage of the entire field of synchrotron radiation and free-electron laser research including instrumentation, theory, computing and scientific applications in areas such as biology, nanoscience and materials science. Rapid publication ensures an up-to-date information resource for scientists and engineers in the field.