Xiaowei Ma, Hongxia Wu, Bin Liu, Songbiao Wang, Yuehua Zhang, Muqing Su, Bin Zheng, Hongbing Pan, Bang Du, Jun Wang, Ping He, Qianfu Chen, Hong An, Wentian Xu, Xiang Luo
{"title":"基因组多样性、种群结构和全基因组关联揭示了芒果的遗传分化和性状改良。","authors":"Xiaowei Ma, Hongxia Wu, Bin Liu, Songbiao Wang, Yuehua Zhang, Muqing Su, Bin Zheng, Hongbing Pan, Bang Du, Jun Wang, Ping He, Qianfu Chen, Hong An, Wentian Xu, Xiang Luo","doi":"10.1093/hr/uhae153","DOIUrl":null,"url":null,"abstract":"<p><p>Mango (<i>Mangifera indica</i> L.) has been widely cultivated as a culturally and economically significant fruit tree for roughly 4000 years. Despite its rich history, little is known about the crop's domestication, genomic variation, and the genetic loci underlying agronomic traits. This study employs the whole-genome re-sequencing of 224 mango accessions sourced from 22 countries, with an average sequencing depth of 16.37×, to explore their genomic variation and diversity. Through phylogenomic analysis, <i>M. himalis</i> J.Y. Liang, a species grown in China, was reclassified into the cultivated mango group known as <i>M. indica</i>. Moreover, our investigation of mango population structure and differentiation revealed that Chinese accessions could be divided into two distinct gene pools, indicating the presence of independent genetic diversity ecotypes. By coupling genome-wide association studies with analyses of genotype variation patterns and expression patterns, we identified several candidate loci and dominant genotypes associated with mango flowering capability, fruit weight, and volatile compound production. In conclusion, our study offers valuable insights into the genetic differentiation of mango populations, paving the way for future agronomic improvements through genomic-assisted breeding.</p>","PeriodicalId":57479,"journal":{"name":"园艺研究(英文)","volume":"11 7","pages":"uhae153"},"PeriodicalIF":7.6000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11246242/pdf/","citationCount":"0","resultStr":"{\"title\":\"Genomic diversity, population structure, and genome-wide association reveal genetic differentiation and trait improvements in mango.\",\"authors\":\"Xiaowei Ma, Hongxia Wu, Bin Liu, Songbiao Wang, Yuehua Zhang, Muqing Su, Bin Zheng, Hongbing Pan, Bang Du, Jun Wang, Ping He, Qianfu Chen, Hong An, Wentian Xu, Xiang Luo\",\"doi\":\"10.1093/hr/uhae153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mango (<i>Mangifera indica</i> L.) has been widely cultivated as a culturally and economically significant fruit tree for roughly 4000 years. Despite its rich history, little is known about the crop's domestication, genomic variation, and the genetic loci underlying agronomic traits. This study employs the whole-genome re-sequencing of 224 mango accessions sourced from 22 countries, with an average sequencing depth of 16.37×, to explore their genomic variation and diversity. Through phylogenomic analysis, <i>M. himalis</i> J.Y. Liang, a species grown in China, was reclassified into the cultivated mango group known as <i>M. indica</i>. Moreover, our investigation of mango population structure and differentiation revealed that Chinese accessions could be divided into two distinct gene pools, indicating the presence of independent genetic diversity ecotypes. By coupling genome-wide association studies with analyses of genotype variation patterns and expression patterns, we identified several candidate loci and dominant genotypes associated with mango flowering capability, fruit weight, and volatile compound production. In conclusion, our study offers valuable insights into the genetic differentiation of mango populations, paving the way for future agronomic improvements through genomic-assisted breeding.</p>\",\"PeriodicalId\":57479,\"journal\":{\"name\":\"园艺研究(英文)\",\"volume\":\"11 7\",\"pages\":\"uhae153\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11246242/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"园艺研究(英文)\",\"FirstCategoryId\":\"1091\",\"ListUrlMain\":\"https://doi.org/10.1093/hr/uhae153\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"园艺研究(英文)","FirstCategoryId":"1091","ListUrlMain":"https://doi.org/10.1093/hr/uhae153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
摘要
芒果(Mangifera indica L.)作为一种具有文化和经济意义的果树被广泛栽培已有大约 4000 年的历史。尽管其历史悠久,但人们对该作物的驯化、基因组变异以及农艺性状的遗传位点却知之甚少。本研究对来自 22 个国家的 224 个芒果品种进行了全基因组重测序,平均测序深度为 16.37×,以探索其基因组变异和多样性。通过系统发生组分析,中国种植的 M. himalis J.Y. Liang 被重新归入栽培芒果组,即 M. indica。此外,我们对芒果种群结构和分化的调查显示,中国的芒果品种可分为两个不同的基因库,表明存在独立的遗传多样性生态型。通过将全基因组关联研究与基因型变异模式和表达模式分析相结合,我们发现了几个与芒果开花能力、果实重量和挥发性化合物产量相关的候选基因位点和显性基因型。总之,我们的研究为芒果种群的遗传分化提供了宝贵的见解,为未来通过基因组辅助育种改进农艺铺平了道路。
Genomic diversity, population structure, and genome-wide association reveal genetic differentiation and trait improvements in mango.
Mango (Mangifera indica L.) has been widely cultivated as a culturally and economically significant fruit tree for roughly 4000 years. Despite its rich history, little is known about the crop's domestication, genomic variation, and the genetic loci underlying agronomic traits. This study employs the whole-genome re-sequencing of 224 mango accessions sourced from 22 countries, with an average sequencing depth of 16.37×, to explore their genomic variation and diversity. Through phylogenomic analysis, M. himalis J.Y. Liang, a species grown in China, was reclassified into the cultivated mango group known as M. indica. Moreover, our investigation of mango population structure and differentiation revealed that Chinese accessions could be divided into two distinct gene pools, indicating the presence of independent genetic diversity ecotypes. By coupling genome-wide association studies with analyses of genotype variation patterns and expression patterns, we identified several candidate loci and dominant genotypes associated with mango flowering capability, fruit weight, and volatile compound production. In conclusion, our study offers valuable insights into the genetic differentiation of mango populations, paving the way for future agronomic improvements through genomic-assisted breeding.