通过基于对接的虚拟筛选和 MD 模拟,从天然化合物数据库中发现潜在的 CDK9 抑制剂。

IF 2.1 4区 化学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Molecular Modeling Pub Date : 2024-07-16 DOI:10.1007/s00894-024-06067-z
Pooja Singh, Vikas Kumar, Tae Sung Jung, Jeong Sang Lee, Keun Woo Lee, Jong Chan Hong
{"title":"通过基于对接的虚拟筛选和 MD 模拟,从天然化合物数据库中发现潜在的 CDK9 抑制剂。","authors":"Pooja Singh,&nbsp;Vikas Kumar,&nbsp;Tae Sung Jung,&nbsp;Jeong Sang Lee,&nbsp;Keun Woo Lee,&nbsp;Jong Chan Hong","doi":"10.1007/s00894-024-06067-z","DOIUrl":null,"url":null,"abstract":"<div><h3>Context</h3><p>Cyclin-dependent kinase 9 (CDK9) plays a significant role in gene regulation and RNA polymerase II transcription under basal and stimulated conditions. The upregulation of transcriptional homeostasis by CDK9 leads to various malignant tumors and therefore acts as a valuable drug target in addressing cancer incidences. Ongoing drug development endeavors targeting CDK9 have yielded numerous clinical candidate molecules currently undergoing investigation as potential CDK9 modulators, though none have yet received Food and Drug Administration (FDA) approval.</p><h3>Methods</h3><p>In this study, we employ in silico approaches including the molecular docking and molecular dynamics simulations for the virtual screening over the natural compounds library to identify novel promising selective CDK9 inhibitors. The compounds derived from the initial virtual screening were subsequently employed for molecular dynamics simulations and binding free energy calculations to study the compound’s stability under virtual physiological conditions. The first-generation CDK inhibitor Flavopiridol was used as a reference to compare with our novel hit compound as a CDK9 antagonist. The 500-ns molecular dynamics simulation and binding free energy calculation showed that two natural compounds showed better binding affinity and interaction mode with CDK9 receptors over the reference Flavopiridol. They also showed reasonable figures in the predicted absorption, distribution, metabolism, excretion, and toxicity (ADMET) calculations as well as in computational cytotoxicity predictions. Therefore, we anticipate that the proposed scaffolds could contribute to developing potential and selective CDK9 inhibitors subjected to further validations.</p></div>","PeriodicalId":651,"journal":{"name":"Journal of Molecular Modeling","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uncovering potential CDK9 inhibitors from natural compound databases through docking-based virtual screening and MD simulations\",\"authors\":\"Pooja Singh,&nbsp;Vikas Kumar,&nbsp;Tae Sung Jung,&nbsp;Jeong Sang Lee,&nbsp;Keun Woo Lee,&nbsp;Jong Chan Hong\",\"doi\":\"10.1007/s00894-024-06067-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Context</h3><p>Cyclin-dependent kinase 9 (CDK9) plays a significant role in gene regulation and RNA polymerase II transcription under basal and stimulated conditions. The upregulation of transcriptional homeostasis by CDK9 leads to various malignant tumors and therefore acts as a valuable drug target in addressing cancer incidences. Ongoing drug development endeavors targeting CDK9 have yielded numerous clinical candidate molecules currently undergoing investigation as potential CDK9 modulators, though none have yet received Food and Drug Administration (FDA) approval.</p><h3>Methods</h3><p>In this study, we employ in silico approaches including the molecular docking and molecular dynamics simulations for the virtual screening over the natural compounds library to identify novel promising selective CDK9 inhibitors. The compounds derived from the initial virtual screening were subsequently employed for molecular dynamics simulations and binding free energy calculations to study the compound’s stability under virtual physiological conditions. The first-generation CDK inhibitor Flavopiridol was used as a reference to compare with our novel hit compound as a CDK9 antagonist. The 500-ns molecular dynamics simulation and binding free energy calculation showed that two natural compounds showed better binding affinity and interaction mode with CDK9 receptors over the reference Flavopiridol. They also showed reasonable figures in the predicted absorption, distribution, metabolism, excretion, and toxicity (ADMET) calculations as well as in computational cytotoxicity predictions. Therefore, we anticipate that the proposed scaffolds could contribute to developing potential and selective CDK9 inhibitors subjected to further validations.</p></div>\",\"PeriodicalId\":651,\"journal\":{\"name\":\"Journal of Molecular Modeling\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Modeling\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00894-024-06067-z\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Modeling","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00894-024-06067-z","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:细胞周期蛋白依赖性激酶 9(CDK9)在基因调控和基础及刺激条件下的 RNA 聚合酶 II 转录中发挥着重要作用。CDK9 对转录平衡的上调会导致各种恶性肿瘤,因此是治疗癌症的重要药物靶点。目前正在进行的以 CDK9 为靶点的药物开发工作产生了许多临床候选分子,这些分子目前正作为潜在的 CDK9 调节剂接受研究,但还没有一个获得美国食品药品管理局(FDA)的批准:在这项研究中,我们采用了包括分子对接和分子动力学模拟在内的硅学方法,对天然化合物库进行虚拟筛选,以确定有前景的新型选择性 CDK9 抑制剂。初步虚拟筛选出的化合物随后被用于分子动力学模拟和结合自由能计算,以研究化合物在虚拟生理条件下的稳定性。第一代 CDK 抑制剂 Flavopiridol 被用作参照物,与我们的新型 CDK9 拮抗剂进行比较。500-ns 分子动力学模拟和结合自由能计算结果表明,两种天然化合物与 CDK9 受体的结合亲和力和相互作用模式均优于参照物 Flavopiridol。它们在预测吸收、分布、代谢、排泄和毒性(ADMET)计算以及计算细胞毒性预测中也显示出合理的数据。因此,我们预计所提出的支架有助于开发潜在的、具有选择性的 CDK9 抑制剂,并有待进一步验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Uncovering potential CDK9 inhibitors from natural compound databases through docking-based virtual screening and MD simulations

Context

Cyclin-dependent kinase 9 (CDK9) plays a significant role in gene regulation and RNA polymerase II transcription under basal and stimulated conditions. The upregulation of transcriptional homeostasis by CDK9 leads to various malignant tumors and therefore acts as a valuable drug target in addressing cancer incidences. Ongoing drug development endeavors targeting CDK9 have yielded numerous clinical candidate molecules currently undergoing investigation as potential CDK9 modulators, though none have yet received Food and Drug Administration (FDA) approval.

Methods

In this study, we employ in silico approaches including the molecular docking and molecular dynamics simulations for the virtual screening over the natural compounds library to identify novel promising selective CDK9 inhibitors. The compounds derived from the initial virtual screening were subsequently employed for molecular dynamics simulations and binding free energy calculations to study the compound’s stability under virtual physiological conditions. The first-generation CDK inhibitor Flavopiridol was used as a reference to compare with our novel hit compound as a CDK9 antagonist. The 500-ns molecular dynamics simulation and binding free energy calculation showed that two natural compounds showed better binding affinity and interaction mode with CDK9 receptors over the reference Flavopiridol. They also showed reasonable figures in the predicted absorption, distribution, metabolism, excretion, and toxicity (ADMET) calculations as well as in computational cytotoxicity predictions. Therefore, we anticipate that the proposed scaffolds could contribute to developing potential and selective CDK9 inhibitors subjected to further validations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Molecular Modeling
Journal of Molecular Modeling 化学-化学综合
CiteScore
3.50
自引率
4.50%
发文量
362
审稿时长
2.9 months
期刊介绍: The Journal of Molecular Modeling focuses on "hardcore" modeling, publishing high-quality research and reports. Founded in 1995 as a purely electronic journal, it has adapted its format to include a full-color print edition, and adjusted its aims and scope fit the fast-changing field of molecular modeling, with a particular focus on three-dimensional modeling. Today, the journal covers all aspects of molecular modeling including life science modeling; materials modeling; new methods; and computational chemistry. Topics include computer-aided molecular design; rational drug design, de novo ligand design, receptor modeling and docking; cheminformatics, data analysis, visualization and mining; computational medicinal chemistry; homology modeling; simulation of peptides, DNA and other biopolymers; quantitative structure-activity relationships (QSAR) and ADME-modeling; modeling of biological reaction mechanisms; and combined experimental and computational studies in which calculations play a major role.
期刊最新文献
Exploring blood-brain barrier passage using atomic weighted vector and machine learning. Towards improving the characteristics of high-energy pyrazines and their N-oxides. A head-to-head comparison of MM/PBSA and MM/GBSA in predicting binding affinities for the CB1 cannabinoid ligands. Effect of triangular pits on the mechanical behavior of 2D MoTe2: a molecular dynamics study. Pharmacophore-based 3D-QSAR modeling, virtual screening, docking, molecular dynamics and biological evaluation studies for identification of potential inhibitors of alpha-glucosidase
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1