B 型肉毒毒素轻链的重组膜渗透型的表达、纯化和应用。

IF 3.8 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Bioscience Reports Pub Date : 2024-07-31 DOI:10.1042/BSR20240117
Micaela Vanina Buzzatto, Fabiana Cristina Benegas Guerrero, Pablo Ariel Álvarez, María Paz Zizzias, Luis Mariano Polo, Claudia Nora Tomes
{"title":"B 型肉毒毒素轻链的重组膜渗透型的表达、纯化和应用。","authors":"Micaela Vanina Buzzatto, Fabiana Cristina Benegas Guerrero, Pablo Ariel Álvarez, María Paz Zizzias, Luis Mariano Polo, Claudia Nora Tomes","doi":"10.1042/BSR20240117","DOIUrl":null,"url":null,"abstract":"<p><p>Botulinum neurotoxins (BoNTs) are valuable tools to unveil molecular mechanisms of exocytosis in neuronal and non-neuronal cells due to their peptidase activity on exocytic isoforms of SNARE proteins. They are produced by Clostridia as single-chain polypeptides that are proteolytically cleaved into light, catalytic domains covalently linked via disulfide bonds to heavy, targeting domains. This format of two subunits linked by disulfide bonds is required for the full neurotoxicity of BoNTs. We have generated a recombinant version of BoNT/B that consists of the light chain of the toxin fused to the protein transduction domain of the human immunodeficiency virus-1 (TAT peptide) and a hexahistidine tag. His6-TAT-BoNT/B-LC, expressed in Escherichia coli and purified by affinity chromatography, penetrated membranes and exhibited strong enzymatic activity, as evidenced by cleavage of the SNARE synaptobrevin from rat brain synaptosomes and human sperm cells. Proteolytic attack of synaptobrevin hindered exocytosis triggered by a calcium ionophore in the latter. The novel tool reported herein disrupts the function of a SNARE protein within minutes in cells that may or may not express the receptors for the BoNT/B heavy chain, and without the need for transient transfection or permeabilization.</p>","PeriodicalId":8926,"journal":{"name":"Bioscience Reports","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11292472/pdf/","citationCount":"0","resultStr":"{\"title\":\"Expression, purification and application of a recombinant, membrane permeating version of the light chain of botulinum toxin B.\",\"authors\":\"Micaela Vanina Buzzatto, Fabiana Cristina Benegas Guerrero, Pablo Ariel Álvarez, María Paz Zizzias, Luis Mariano Polo, Claudia Nora Tomes\",\"doi\":\"10.1042/BSR20240117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Botulinum neurotoxins (BoNTs) are valuable tools to unveil molecular mechanisms of exocytosis in neuronal and non-neuronal cells due to their peptidase activity on exocytic isoforms of SNARE proteins. They are produced by Clostridia as single-chain polypeptides that are proteolytically cleaved into light, catalytic domains covalently linked via disulfide bonds to heavy, targeting domains. This format of two subunits linked by disulfide bonds is required for the full neurotoxicity of BoNTs. We have generated a recombinant version of BoNT/B that consists of the light chain of the toxin fused to the protein transduction domain of the human immunodeficiency virus-1 (TAT peptide) and a hexahistidine tag. His6-TAT-BoNT/B-LC, expressed in Escherichia coli and purified by affinity chromatography, penetrated membranes and exhibited strong enzymatic activity, as evidenced by cleavage of the SNARE synaptobrevin from rat brain synaptosomes and human sperm cells. Proteolytic attack of synaptobrevin hindered exocytosis triggered by a calcium ionophore in the latter. The novel tool reported herein disrupts the function of a SNARE protein within minutes in cells that may or may not express the receptors for the BoNT/B heavy chain, and without the need for transient transfection or permeabilization.</p>\",\"PeriodicalId\":8926,\"journal\":{\"name\":\"Bioscience Reports\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11292472/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioscience Reports\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1042/BSR20240117\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioscience Reports","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1042/BSR20240117","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

肉毒杆菌神经毒素(BoNTs)对 SNARE 蛋白的外排异构体具有肽酶活性,是揭示神经元和非神经元细胞外排的分子机制的重要工具。它们是由梭状芽孢杆菌产生的单链多肽,通过蛋白水解作用裂解成轻型催化结构域,并通过二硫键与重型靶向结构域共价连接。这种通过二硫键连接的两个亚基的形式是 BoNTs 充分发挥神经毒性的必要条件。我们生成了一种重组型 BoNT/B,它由融合了人类免疫缺陷病毒-1 蛋白质转导结构域(TAT 肽)的毒素轻链和六组氨酸标签组成。His 6 -TAT-BoNT/B-LC在大肠杆菌中表达,并通过亲和层析法纯化,可穿透膜并表现出很强的酶活性,大鼠脑突触体和人精细胞中的SNARE突触素被裂解就是证明。对突触珠蛋白的蛋白水解作用阻碍了后者由钙离子诱导剂引发的外泌。本文报告的新工具可在几分钟内破坏可能表达或不表达 BoNT/B 重链受体的细胞中 SNARE 蛋白的功能,而且无需瞬时转染或渗透。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Expression, purification and application of a recombinant, membrane permeating version of the light chain of botulinum toxin B.

Botulinum neurotoxins (BoNTs) are valuable tools to unveil molecular mechanisms of exocytosis in neuronal and non-neuronal cells due to their peptidase activity on exocytic isoforms of SNARE proteins. They are produced by Clostridia as single-chain polypeptides that are proteolytically cleaved into light, catalytic domains covalently linked via disulfide bonds to heavy, targeting domains. This format of two subunits linked by disulfide bonds is required for the full neurotoxicity of BoNTs. We have generated a recombinant version of BoNT/B that consists of the light chain of the toxin fused to the protein transduction domain of the human immunodeficiency virus-1 (TAT peptide) and a hexahistidine tag. His6-TAT-BoNT/B-LC, expressed in Escherichia coli and purified by affinity chromatography, penetrated membranes and exhibited strong enzymatic activity, as evidenced by cleavage of the SNARE synaptobrevin from rat brain synaptosomes and human sperm cells. Proteolytic attack of synaptobrevin hindered exocytosis triggered by a calcium ionophore in the latter. The novel tool reported herein disrupts the function of a SNARE protein within minutes in cells that may or may not express the receptors for the BoNT/B heavy chain, and without the need for transient transfection or permeabilization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioscience Reports
Bioscience Reports 生物-细胞生物学
CiteScore
8.50
自引率
0.00%
发文量
380
审稿时长
6-12 weeks
期刊介绍: Bioscience Reports provides a home for sound scientific research in all areas of cell biology and molecular life sciences. Since 2012, Bioscience Reports has been fully Open Access and publishes all papers under the liberal CC BY licence, giving the life science community quality research to share and discuss.Content before 2012 is subscription-only, and is accessible via archive purchase. Articles are assessed on soundness, providing a home for valid findings and data. We welcome papers that span disciplines (e.g. chemistry, medicine), including papers describing: -new methodologies -tools and reagents to probe biological questions -mechanistic details -disease mechanisms -metabolic processes and their regulation -structure and function -bioenergetics
期刊最新文献
Overlapping and Distinct Physical and Biological Phenotypes in Pure Frailty and Obese Frailty. Multiple ASC-dependent inflammasomes drive differential pro-inflammatory cytokine production in a mouse model of tendinopathy. Simulated ischaemia/reperfusion impairs trophoblast function through divergent oxidative stress- and MMP-9-dependent mechanisms. Hormones in malaria infection: influence on disease severity, host physiology, and therapeutic opportunities. Neuroprotective properties of zinc oxide nanoparticles: therapeutic implications for Parkinson's disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1