Nora Josefine Paulke, Carolin Fleischhacker, Justus B Wegener, Gabriel C Riedemann, Constantin Cretu, Mufassra Mushtaq, Nina Zaremba, Wiebke Möbius, Yannik Zühlke, Jasper Wedemeyer, Lorenz Liebmann, Anastasiia A Gorshkova, Daniel Kownatzki-Danger, Eva Wagner, Tobias Kohl, Carolin Wichmann, Olaf Jahn, Henning Urlaub, Karl Toischer, Gerd Hasenfuß, Tobias Moser, Julia Preobraschenski, Christof Lenz, Eva A Rog-Zielinska, Stephan E Lehnart, Sören Brandenburg
{"title":"Dysferlin能使心脏肥大中的肾小管膜增殖","authors":"Nora Josefine Paulke, Carolin Fleischhacker, Justus B Wegener, Gabriel C Riedemann, Constantin Cretu, Mufassra Mushtaq, Nina Zaremba, Wiebke Möbius, Yannik Zühlke, Jasper Wedemeyer, Lorenz Liebmann, Anastasiia A Gorshkova, Daniel Kownatzki-Danger, Eva Wagner, Tobias Kohl, Carolin Wichmann, Olaf Jahn, Henning Urlaub, Karl Toischer, Gerd Hasenfuß, Tobias Moser, Julia Preobraschenski, Christof Lenz, Eva A Rog-Zielinska, Stephan E Lehnart, Sören Brandenburg","doi":"10.1161/CIRCRESAHA.124.324588","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Cardiac hypertrophy compensates for increased biomechanical stress of the heart induced by prevalent cardiovascular pathologies but can result in heart failure if left untreated. Here, we hypothesized that the membrane fusion and repair protein dysferlin is critical for the integrity of the transverse-axial tubule (TAT) network inside cardiomyocytes and contributes to the proliferation of TAT endomembranes during pressure overload-induced cardiac hypertrophy.</p><p><strong>Methods: </strong>Stimulated emission depletion and electron microscopy were used to localize dysferlin in mouse and human cardiomyocytes. Data-independent acquisition mass spectrometry revealed the cardiac dysferlin interactome and proteomic changes of the heart in dysferlin-knockout mice. After transverse aortic constriction, we compared the hypertrophic response of wild-type versus dysferlin-knockout hearts and studied TAT network remodeling mechanisms inside cardiomyocytes by live-cell membrane imaging.</p><p><strong>Results: </strong>We localized dysferlin in a vesicular compartment in nanometric proximity to contact sites of the TAT network with the sarcoplasmic reticulum, a.k.a. junctional complexes for Ca<sup>2+</sup>-induced Ca<sup>2+</sup> release. Interactome analyses demonstrated a novel protein interaction of dysferlin with the membrane-tethering sarcoplasmic reticulum protein juncophilin-2, a putative interactor of L-type Ca<sup>2+</sup> channels and ryanodine receptor Ca<sup>2+</sup> release channels in junctional complexes. Although the dysferlin-knockout caused a mild progressive phenotype of dilated cardiomyopathy, global proteome analysis revealed changes preceding systolic failure. Following transverse aortic constriction, dysferlin protein expression was significantly increased in hypertrophied wild-type myocardium, while dysferlin-knockout animals presented markedly reduced left-ventricular hypertrophy. Live-cell membrane imaging showed a profound reorganization of the TAT network in wild-type left-ventricular myocytes after transverse aortic constriction with robust proliferation of axial tubules, which critically depended on the increased expression of dysferlin within newly emerging tubule components.</p><p><strong>Conclusions: </strong>Dysferlin represents a new molecular target in cardiac disease that protects the integrity of tubule-sarcoplasmic reticulum junctional complexes for regulated excitation-contraction coupling and controls TAT network reorganization and tubular membrane proliferation in cardiomyocyte hypertrophy induced by pressure overload.</p>","PeriodicalId":10147,"journal":{"name":"Circulation research","volume":" ","pages":"554-574"},"PeriodicalIF":16.5000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dysferlin Enables Tubular Membrane Proliferation in Cardiac Hypertrophy.\",\"authors\":\"Nora Josefine Paulke, Carolin Fleischhacker, Justus B Wegener, Gabriel C Riedemann, Constantin Cretu, Mufassra Mushtaq, Nina Zaremba, Wiebke Möbius, Yannik Zühlke, Jasper Wedemeyer, Lorenz Liebmann, Anastasiia A Gorshkova, Daniel Kownatzki-Danger, Eva Wagner, Tobias Kohl, Carolin Wichmann, Olaf Jahn, Henning Urlaub, Karl Toischer, Gerd Hasenfuß, Tobias Moser, Julia Preobraschenski, Christof Lenz, Eva A Rog-Zielinska, Stephan E Lehnart, Sören Brandenburg\",\"doi\":\"10.1161/CIRCRESAHA.124.324588\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Cardiac hypertrophy compensates for increased biomechanical stress of the heart induced by prevalent cardiovascular pathologies but can result in heart failure if left untreated. Here, we hypothesized that the membrane fusion and repair protein dysferlin is critical for the integrity of the transverse-axial tubule (TAT) network inside cardiomyocytes and contributes to the proliferation of TAT endomembranes during pressure overload-induced cardiac hypertrophy.</p><p><strong>Methods: </strong>Stimulated emission depletion and electron microscopy were used to localize dysferlin in mouse and human cardiomyocytes. Data-independent acquisition mass spectrometry revealed the cardiac dysferlin interactome and proteomic changes of the heart in dysferlin-knockout mice. After transverse aortic constriction, we compared the hypertrophic response of wild-type versus dysferlin-knockout hearts and studied TAT network remodeling mechanisms inside cardiomyocytes by live-cell membrane imaging.</p><p><strong>Results: </strong>We localized dysferlin in a vesicular compartment in nanometric proximity to contact sites of the TAT network with the sarcoplasmic reticulum, a.k.a. junctional complexes for Ca<sup>2+</sup>-induced Ca<sup>2+</sup> release. Interactome analyses demonstrated a novel protein interaction of dysferlin with the membrane-tethering sarcoplasmic reticulum protein juncophilin-2, a putative interactor of L-type Ca<sup>2+</sup> channels and ryanodine receptor Ca<sup>2+</sup> release channels in junctional complexes. Although the dysferlin-knockout caused a mild progressive phenotype of dilated cardiomyopathy, global proteome analysis revealed changes preceding systolic failure. Following transverse aortic constriction, dysferlin protein expression was significantly increased in hypertrophied wild-type myocardium, while dysferlin-knockout animals presented markedly reduced left-ventricular hypertrophy. Live-cell membrane imaging showed a profound reorganization of the TAT network in wild-type left-ventricular myocytes after transverse aortic constriction with robust proliferation of axial tubules, which critically depended on the increased expression of dysferlin within newly emerging tubule components.</p><p><strong>Conclusions: </strong>Dysferlin represents a new molecular target in cardiac disease that protects the integrity of tubule-sarcoplasmic reticulum junctional complexes for regulated excitation-contraction coupling and controls TAT network reorganization and tubular membrane proliferation in cardiomyocyte hypertrophy induced by pressure overload.</p>\",\"PeriodicalId\":10147,\"journal\":{\"name\":\"Circulation research\",\"volume\":\" \",\"pages\":\"554-574\"},\"PeriodicalIF\":16.5000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Circulation research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1161/CIRCRESAHA.124.324588\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Circulation research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1161/CIRCRESAHA.124.324588","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
摘要
背景:心脏肥大可补偿因心血管病变引起的心脏生物力学应力的增加,但如果不加以治疗,则可能导致心力衰竭。我们假设,具有多个钙2+结合C2域的尾锚蛋白dysferlin对心肌细胞内横轴小管(TAT)网络的完整性至关重要,并在压力过载诱导的心脏肥大过程中促进TAT内膜的增殖:揭示膜融合和修复蛋白 dysferlin 对心肌细胞肥大生长所必需的 TAT 网络稳定和增殖的影响:小鼠心肌细胞的超分辨光镜和电子显微镜检查发现,dysferlin特异性地定位在TAT网络与肌质网(又称Ca2+诱导Ca2+释放的连接复合体)接触点纳米级附近的一个囊泡中。质谱法用于描述心脏 dysferlin 相互作用组的特征,从而确定了一种新型蛋白质与肌质网膜系留蛋白 juncophilin-2 的相互作用,后者是连接复合体中 L 型 Ca2+ 通道和雷诺丁受体 Ca2+ 释放通道的一种假定相互作用因子。当 dysferlin 基因敲除导致小鼠心脏出现扩张型心肌病的轻度进行性表型时,全局蛋白质组分析揭示了收缩功能衰竭之前的变化。横向主动脉收缩后,肥厚的野生型心肌中dysferlin蛋白表达显著增加,而dysferlin基因敲除动物的左心室肥厚明显减轻。活细胞膜成像显示,野生型左心室心肌细胞在横向主动脉收缩后TAT网络发生了深刻的重组,轴突小管增生强劲,这主要依赖于新出现的小管成分中dysferlin表达的增加:Dysferlin是心脏疾病中的一个新分子靶点,它能保护小管-肌浆网连接复合体的完整性,以调节兴奋-收缩耦合,并在压力过载诱导的心肌细胞肥大过程中控制TAT网络重组和小管膜增殖。
Dysferlin Enables Tubular Membrane Proliferation in Cardiac Hypertrophy.
Background: Cardiac hypertrophy compensates for increased biomechanical stress of the heart induced by prevalent cardiovascular pathologies but can result in heart failure if left untreated. Here, we hypothesized that the membrane fusion and repair protein dysferlin is critical for the integrity of the transverse-axial tubule (TAT) network inside cardiomyocytes and contributes to the proliferation of TAT endomembranes during pressure overload-induced cardiac hypertrophy.
Methods: Stimulated emission depletion and electron microscopy were used to localize dysferlin in mouse and human cardiomyocytes. Data-independent acquisition mass spectrometry revealed the cardiac dysferlin interactome and proteomic changes of the heart in dysferlin-knockout mice. After transverse aortic constriction, we compared the hypertrophic response of wild-type versus dysferlin-knockout hearts and studied TAT network remodeling mechanisms inside cardiomyocytes by live-cell membrane imaging.
Results: We localized dysferlin in a vesicular compartment in nanometric proximity to contact sites of the TAT network with the sarcoplasmic reticulum, a.k.a. junctional complexes for Ca2+-induced Ca2+ release. Interactome analyses demonstrated a novel protein interaction of dysferlin with the membrane-tethering sarcoplasmic reticulum protein juncophilin-2, a putative interactor of L-type Ca2+ channels and ryanodine receptor Ca2+ release channels in junctional complexes. Although the dysferlin-knockout caused a mild progressive phenotype of dilated cardiomyopathy, global proteome analysis revealed changes preceding systolic failure. Following transverse aortic constriction, dysferlin protein expression was significantly increased in hypertrophied wild-type myocardium, while dysferlin-knockout animals presented markedly reduced left-ventricular hypertrophy. Live-cell membrane imaging showed a profound reorganization of the TAT network in wild-type left-ventricular myocytes after transverse aortic constriction with robust proliferation of axial tubules, which critically depended on the increased expression of dysferlin within newly emerging tubule components.
Conclusions: Dysferlin represents a new molecular target in cardiac disease that protects the integrity of tubule-sarcoplasmic reticulum junctional complexes for regulated excitation-contraction coupling and controls TAT network reorganization and tubular membrane proliferation in cardiomyocyte hypertrophy induced by pressure overload.
期刊介绍:
Circulation Research is a peer-reviewed journal that serves as a forum for the highest quality research in basic cardiovascular biology. The journal publishes studies that utilize state-of-the-art approaches to investigate mechanisms of human disease, as well as translational and clinical research that provide fundamental insights into the basis of disease and the mechanism of therapies.
Circulation Research has a broad audience that includes clinical and academic cardiologists, basic cardiovascular scientists, physiologists, cellular and molecular biologists, and cardiovascular pharmacologists. The journal aims to advance the understanding of cardiovascular biology and disease by disseminating cutting-edge research to these diverse communities.
In terms of indexing, Circulation Research is included in several prominent scientific databases, including BIOSIS, CAB Abstracts, Chemical Abstracts, Current Contents, EMBASE, and MEDLINE. This ensures that the journal's articles are easily discoverable and accessible to researchers in the field.
Overall, Circulation Research is a reputable publication that attracts high-quality research and provides a platform for the dissemination of important findings in basic cardiovascular biology and its translational and clinical applications.