{"title":"噬菌体作为囊性纤维化的潜在抗生素增效剂:研究抗生素与针对金黄色葡萄球菌和铜绿假单胞菌双物种生物膜的噬菌体鸡尾酒组合的新模型。","authors":"","doi":"10.1016/j.ijantimicag.2024.107276","DOIUrl":null,"url":null,"abstract":"<div><h3>Objectives</h3><p><em>Staphylococcus aureus</em> and <em>Pseudomonas aeruginosa</em> co-infections in patients with cystic fibrosis (CF) are associated with disease severity. Their treatment is complicated by biofilm formation in the sticky mucus obstructing the airways. We investigated the activity of phages-antibiotics combinations using a dual species biofilm (<em>P. aeruginosa/S. aureus</em>) formed in artificial sputum medium.</p></div><div><h3>Methods</h3><p>Biofilmswere incubated with broad-spectrum antibiotics (meropenem, ceftazidime, ciprofloxacin, tobramycin) combined with a cocktail of two (bacterio)phages (PSP3 and ISP) proven active via spot tests and double agar on <em>P. aeruginosa</em> PAO1 and <em>S. aureus</em> ATCC 25923.</p></div><div><h3>Results</h3><p>At the highest tested concentrations (100 x MIC), antibiotics alone caused a 20–50% reduction in biomass and reduced <em>S. aureus</em> and <em>P. aeruginosa</em> CFU of 2.3 to 2.8 and 2.1 to 3.6 log<sub>10</sub>, respectively. Phages alone reduced biofilm biomass by 23% and reduced <em>P. aeruginosa</em> CFU of 2.1 log<sub>10</sub>, but did not affect <em>S. aureus</em> viability. Phages enhanced antibiotic effects on biomass and exhibited additive effects with antibiotics against <em>P. aeruginosa</em>, but not against <em>S. aureus.</em> Following inhibition of bacterial respiration by phages in planktonic cultures rationalised these observations by demonstrating that PSP3 was effective at multiplicities of infection (MOI) as low as 10<sup>−4</sup> plaque forming units (PFU)/CFU on <em>P. aeruginosa</em>, but ISP, at higher MOI (> 0.1) against <em>S. aureus</em>.</p></div><div><h3>Conclusion</h3><p>Pre-screening inhibition of bacterial respiration by phages may assist in selecting those showing activity at sufficiently low titers to showcase anti-biofilm activity in this complex but clinically-relevant in vitro model of biofilm.</p></div>","PeriodicalId":13818,"journal":{"name":"International Journal of Antimicrobial Agents","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bacteriophages as potential antibiotic potentiators in cystic fibrosis: A new model to study the combination of antibiotics with a bacteriophage cocktail targeting dual species biofilms of Staphylococcus aureus and Pseudomonas aeruginosa\",\"authors\":\"\",\"doi\":\"10.1016/j.ijantimicag.2024.107276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objectives</h3><p><em>Staphylococcus aureus</em> and <em>Pseudomonas aeruginosa</em> co-infections in patients with cystic fibrosis (CF) are associated with disease severity. Their treatment is complicated by biofilm formation in the sticky mucus obstructing the airways. We investigated the activity of phages-antibiotics combinations using a dual species biofilm (<em>P. aeruginosa/S. aureus</em>) formed in artificial sputum medium.</p></div><div><h3>Methods</h3><p>Biofilmswere incubated with broad-spectrum antibiotics (meropenem, ceftazidime, ciprofloxacin, tobramycin) combined with a cocktail of two (bacterio)phages (PSP3 and ISP) proven active via spot tests and double agar on <em>P. aeruginosa</em> PAO1 and <em>S. aureus</em> ATCC 25923.</p></div><div><h3>Results</h3><p>At the highest tested concentrations (100 x MIC), antibiotics alone caused a 20–50% reduction in biomass and reduced <em>S. aureus</em> and <em>P. aeruginosa</em> CFU of 2.3 to 2.8 and 2.1 to 3.6 log<sub>10</sub>, respectively. Phages alone reduced biofilm biomass by 23% and reduced <em>P. aeruginosa</em> CFU of 2.1 log<sub>10</sub>, but did not affect <em>S. aureus</em> viability. Phages enhanced antibiotic effects on biomass and exhibited additive effects with antibiotics against <em>P. aeruginosa</em>, but not against <em>S. aureus.</em> Following inhibition of bacterial respiration by phages in planktonic cultures rationalised these observations by demonstrating that PSP3 was effective at multiplicities of infection (MOI) as low as 10<sup>−4</sup> plaque forming units (PFU)/CFU on <em>P. aeruginosa</em>, but ISP, at higher MOI (> 0.1) against <em>S. aureus</em>.</p></div><div><h3>Conclusion</h3><p>Pre-screening inhibition of bacterial respiration by phages may assist in selecting those showing activity at sufficiently low titers to showcase anti-biofilm activity in this complex but clinically-relevant in vitro model of biofilm.</p></div>\",\"PeriodicalId\":13818,\"journal\":{\"name\":\"International Journal of Antimicrobial Agents\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Antimicrobial Agents\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0924857924001948\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"INFECTIOUS DISEASES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Antimicrobial Agents","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924857924001948","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
Bacteriophages as potential antibiotic potentiators in cystic fibrosis: A new model to study the combination of antibiotics with a bacteriophage cocktail targeting dual species biofilms of Staphylococcus aureus and Pseudomonas aeruginosa
Objectives
Staphylococcus aureus and Pseudomonas aeruginosa co-infections in patients with cystic fibrosis (CF) are associated with disease severity. Their treatment is complicated by biofilm formation in the sticky mucus obstructing the airways. We investigated the activity of phages-antibiotics combinations using a dual species biofilm (P. aeruginosa/S. aureus) formed in artificial sputum medium.
Methods
Biofilmswere incubated with broad-spectrum antibiotics (meropenem, ceftazidime, ciprofloxacin, tobramycin) combined with a cocktail of two (bacterio)phages (PSP3 and ISP) proven active via spot tests and double agar on P. aeruginosa PAO1 and S. aureus ATCC 25923.
Results
At the highest tested concentrations (100 x MIC), antibiotics alone caused a 20–50% reduction in biomass and reduced S. aureus and P. aeruginosa CFU of 2.3 to 2.8 and 2.1 to 3.6 log10, respectively. Phages alone reduced biofilm biomass by 23% and reduced P. aeruginosa CFU of 2.1 log10, but did not affect S. aureus viability. Phages enhanced antibiotic effects on biomass and exhibited additive effects with antibiotics against P. aeruginosa, but not against S. aureus. Following inhibition of bacterial respiration by phages in planktonic cultures rationalised these observations by demonstrating that PSP3 was effective at multiplicities of infection (MOI) as low as 10−4 plaque forming units (PFU)/CFU on P. aeruginosa, but ISP, at higher MOI (> 0.1) against S. aureus.
Conclusion
Pre-screening inhibition of bacterial respiration by phages may assist in selecting those showing activity at sufficiently low titers to showcase anti-biofilm activity in this complex but clinically-relevant in vitro model of biofilm.
期刊介绍:
The International Journal of Antimicrobial Agents is a peer-reviewed publication offering comprehensive and current reference information on the physical, pharmacological, in vitro, and clinical properties of individual antimicrobial agents, covering antiviral, antiparasitic, antibacterial, and antifungal agents. The journal not only communicates new trends and developments through authoritative review articles but also addresses the critical issue of antimicrobial resistance, both in hospital and community settings. Published content includes solicited reviews by leading experts and high-quality original research papers in the specified fields.