Sergio García-Dalí, Daniel F. Carrasco, Silvia Villar-Rodil, Juan I. Paredes, Juan M.D. Tascón
{"title":"用碘乙酸对石墨烯纳米片进行电化学功能化,使其用于超级电容器电极","authors":"Sergio García-Dalí, Daniel F. Carrasco, Silvia Villar-Rodil, Juan I. Paredes, Juan M.D. Tascón","doi":"10.1016/j.flatc.2024.100710","DOIUrl":null,"url":null,"abstract":"<div><p>Graphene nanosheets show great potential as electrode materials for supercapacitors due to their high surface area and excellent electrical conductivity. However, the low hydrophilicity of graphene nanosheets limits their electrochemical performance in aqueous supercapacitor applications. To enhance their electrochemical performance, we investigate the use of iodoacetic acid as an electrolytic functionalization agent for graphene nanosheets. Here, we demonstrate the successful electrolytic functionalization of graphene nanosheets under cathodic conditions in aqueous medium. The resulting material exhibits a high structural quality and carboxyl groups on the surface, which increases the hydrophilicity and wettability of the material. The applied voltage and the concentration of iodoacetic acid have been found to be key factors to optimize the process in order to get the maximum functionalization degree. The electrochemical performance demonstrates that iodoacetic acid functionalized graphene nanosheets exhibit significantly improved specific capacitance (220F/g at 0.5 A/g) and cycling stability of the symmetric cell compared to pristine graphene nanosheets, highlighting the potential of electrochemical functionalization to improve the performance of graphene-based materials in energy storage applications.</p></div>","PeriodicalId":316,"journal":{"name":"FlatChem","volume":"47 ","pages":"Article 100710"},"PeriodicalIF":5.9000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrochemical functionalization of graphene nanosheets with iodoacetic acid towards supercapacitor electrodes\",\"authors\":\"Sergio García-Dalí, Daniel F. Carrasco, Silvia Villar-Rodil, Juan I. Paredes, Juan M.D. Tascón\",\"doi\":\"10.1016/j.flatc.2024.100710\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Graphene nanosheets show great potential as electrode materials for supercapacitors due to their high surface area and excellent electrical conductivity. However, the low hydrophilicity of graphene nanosheets limits their electrochemical performance in aqueous supercapacitor applications. To enhance their electrochemical performance, we investigate the use of iodoacetic acid as an electrolytic functionalization agent for graphene nanosheets. Here, we demonstrate the successful electrolytic functionalization of graphene nanosheets under cathodic conditions in aqueous medium. The resulting material exhibits a high structural quality and carboxyl groups on the surface, which increases the hydrophilicity and wettability of the material. The applied voltage and the concentration of iodoacetic acid have been found to be key factors to optimize the process in order to get the maximum functionalization degree. The electrochemical performance demonstrates that iodoacetic acid functionalized graphene nanosheets exhibit significantly improved specific capacitance (220F/g at 0.5 A/g) and cycling stability of the symmetric cell compared to pristine graphene nanosheets, highlighting the potential of electrochemical functionalization to improve the performance of graphene-based materials in energy storage applications.</p></div>\",\"PeriodicalId\":316,\"journal\":{\"name\":\"FlatChem\",\"volume\":\"47 \",\"pages\":\"Article 100710\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FlatChem\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452262724001041\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FlatChem","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452262724001041","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Electrochemical functionalization of graphene nanosheets with iodoacetic acid towards supercapacitor electrodes
Graphene nanosheets show great potential as electrode materials for supercapacitors due to their high surface area and excellent electrical conductivity. However, the low hydrophilicity of graphene nanosheets limits their electrochemical performance in aqueous supercapacitor applications. To enhance their electrochemical performance, we investigate the use of iodoacetic acid as an electrolytic functionalization agent for graphene nanosheets. Here, we demonstrate the successful electrolytic functionalization of graphene nanosheets under cathodic conditions in aqueous medium. The resulting material exhibits a high structural quality and carboxyl groups on the surface, which increases the hydrophilicity and wettability of the material. The applied voltage and the concentration of iodoacetic acid have been found to be key factors to optimize the process in order to get the maximum functionalization degree. The electrochemical performance demonstrates that iodoacetic acid functionalized graphene nanosheets exhibit significantly improved specific capacitance (220F/g at 0.5 A/g) and cycling stability of the symmetric cell compared to pristine graphene nanosheets, highlighting the potential of electrochemical functionalization to improve the performance of graphene-based materials in energy storage applications.
期刊介绍:
FlatChem - Chemistry of Flat Materials, a new voice in the community, publishes original and significant, cutting-edge research related to the chemistry of graphene and related 2D & layered materials. The overall aim of the journal is to combine the chemistry and applications of these materials, where the submission of communications, full papers, and concepts should contain chemistry in a materials context, which can be both experimental and/or theoretical. In addition to original research articles, FlatChem also offers reviews, minireviews, highlights and perspectives on the future of this research area with the scientific leaders in fields related to Flat Materials. Topics of interest include, but are not limited to, the following: -Design, synthesis, applications and investigation of graphene, graphene related materials and other 2D & layered materials (for example Silicene, Germanene, Phosphorene, MXenes, Boron nitride, Transition metal dichalcogenides) -Characterization of these materials using all forms of spectroscopy and microscopy techniques -Chemical modification or functionalization and dispersion of these materials, as well as interactions with other materials -Exploring the surface chemistry of these materials for applications in: Sensors or detectors in electrochemical/Lab on a Chip devices, Composite materials, Membranes, Environment technology, Catalysis for energy storage and conversion (for example fuel cells, supercapacitors, batteries, hydrogen storage), Biomedical technology (drug delivery, biosensing, bioimaging)