{"title":"创新型自修复粘合剂可应对降解和去石灰化挑战:结构、机理、高能量和耐久性","authors":"Farshad Boorboor Ajdari , Fereshteh Abbasi , Ali Molaei Aghdam , Fatemeh Ghorbani Chehel Khaneh , Atefeh Ghaedi Arjenaki , Vahid Farzaneh , Aliakbar Abbasi , Seeram Ramakrishna","doi":"10.1016/j.mser.2024.100830","DOIUrl":null,"url":null,"abstract":"<div><p>Maintaining battery stability is the greatest concern for the next generation of electronic devices, such as automotive and foldable electronics. Advanced lithium batteries experience mechanical fracturing during cycling due to structural changes, reducing their lifespan. Self-healing properties can effectively mitigate this issue, thereby increasing the device's durability. Utilizing intrinsic self-healing polymers (SHPs) is a prevalent strategy, addressing mechanical defects and enhancing electrochemical properties independently. This review begins with a discussion of the SHPs and their various mechanisms of self-healing capability, followed by a presentation of approaches and their strategies for competing with Silicon-based, Li-Metal, and Li-Sulfur batteries. SHPs or binders have a high potential to deal with the critical problems of cracks and volume change problems. Also, it discussed promising methods for employing self-healing materials to combat integrity and stability obstacles. It provided an overview of boosting Li-adsorbing systems, de-lithiation behavior, extending cycle life, and high retention capacity based on the coverage and interlayer binding role, increasing diffusion, and enhancing cycle life. This work would encourage researchers to concentrate substantially on developing self-healing properties for designing high-energy and durable lithium batteries.</p></div>","PeriodicalId":386,"journal":{"name":"Materials Science and Engineering: R: Reports","volume":"160 ","pages":"Article 100830"},"PeriodicalIF":31.6000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Innovative self-repairing binders tackling degradation and de-lithiation challenges: Structure, mechanism, high energy and durability\",\"authors\":\"Farshad Boorboor Ajdari , Fereshteh Abbasi , Ali Molaei Aghdam , Fatemeh Ghorbani Chehel Khaneh , Atefeh Ghaedi Arjenaki , Vahid Farzaneh , Aliakbar Abbasi , Seeram Ramakrishna\",\"doi\":\"10.1016/j.mser.2024.100830\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Maintaining battery stability is the greatest concern for the next generation of electronic devices, such as automotive and foldable electronics. Advanced lithium batteries experience mechanical fracturing during cycling due to structural changes, reducing their lifespan. Self-healing properties can effectively mitigate this issue, thereby increasing the device's durability. Utilizing intrinsic self-healing polymers (SHPs) is a prevalent strategy, addressing mechanical defects and enhancing electrochemical properties independently. This review begins with a discussion of the SHPs and their various mechanisms of self-healing capability, followed by a presentation of approaches and their strategies for competing with Silicon-based, Li-Metal, and Li-Sulfur batteries. SHPs or binders have a high potential to deal with the critical problems of cracks and volume change problems. Also, it discussed promising methods for employing self-healing materials to combat integrity and stability obstacles. It provided an overview of boosting Li-adsorbing systems, de-lithiation behavior, extending cycle life, and high retention capacity based on the coverage and interlayer binding role, increasing diffusion, and enhancing cycle life. This work would encourage researchers to concentrate substantially on developing self-healing properties for designing high-energy and durable lithium batteries.</p></div>\",\"PeriodicalId\":386,\"journal\":{\"name\":\"Materials Science and Engineering: R: Reports\",\"volume\":\"160 \",\"pages\":\"Article 100830\"},\"PeriodicalIF\":31.6000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science and Engineering: R: Reports\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927796X24000603\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: R: Reports","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927796X24000603","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Innovative self-repairing binders tackling degradation and de-lithiation challenges: Structure, mechanism, high energy and durability
Maintaining battery stability is the greatest concern for the next generation of electronic devices, such as automotive and foldable electronics. Advanced lithium batteries experience mechanical fracturing during cycling due to structural changes, reducing their lifespan. Self-healing properties can effectively mitigate this issue, thereby increasing the device's durability. Utilizing intrinsic self-healing polymers (SHPs) is a prevalent strategy, addressing mechanical defects and enhancing electrochemical properties independently. This review begins with a discussion of the SHPs and their various mechanisms of self-healing capability, followed by a presentation of approaches and their strategies for competing with Silicon-based, Li-Metal, and Li-Sulfur batteries. SHPs or binders have a high potential to deal with the critical problems of cracks and volume change problems. Also, it discussed promising methods for employing self-healing materials to combat integrity and stability obstacles. It provided an overview of boosting Li-adsorbing systems, de-lithiation behavior, extending cycle life, and high retention capacity based on the coverage and interlayer binding role, increasing diffusion, and enhancing cycle life. This work would encourage researchers to concentrate substantially on developing self-healing properties for designing high-energy and durable lithium batteries.
期刊介绍:
Materials Science & Engineering R: Reports is a journal that covers a wide range of topics in the field of materials science and engineering. It publishes both experimental and theoretical research papers, providing background information and critical assessments on various topics. The journal aims to publish high-quality and novel research papers and reviews.
The subject areas covered by the journal include Materials Science (General), Electronic Materials, Optical Materials, and Magnetic Materials. In addition to regular issues, the journal also publishes special issues on key themes in the field of materials science, including Energy Materials, Materials for Health, Materials Discovery, Innovation for High Value Manufacturing, and Sustainable Materials development.