使用 Magelia® 平台上的 GlobalFiler™ IQC PCR 扩增试剂盒进行低输入法医 DNA 样品分析的创新方法

IF 3.2 2区 医学 Q2 GENETICS & HEREDITY Forensic Science International-Genetics Pub Date : 2024-07-07 DOI:10.1016/j.fsigen.2024.103093
{"title":"使用 Magelia® 平台上的 GlobalFiler™ IQC PCR 扩增试剂盒进行低输入法医 DNA 样品分析的创新方法","authors":"","doi":"10.1016/j.fsigen.2024.103093","DOIUrl":null,"url":null,"abstract":"<div><p>Short Tandem Repeat (STR) markers have been the gold standard for human identification testing in the forensic field for the last few decades. The GlobalFiler™ IQC PCR amplification Kit has shown sensitivity, high power of discrimination and is therefore widely used. Samples with limited DNA quantities remain a significant hurdle for streamlined human forensic identification. Reaction volume reduction in a closed system paired with automation can provide solutions to secure DNA profiles when routine methods fall short. We automated and optimized the GlobalFiler<sup><strong>TM</strong></sup> IQC PCR Amplification Kit on the Magelia®, a closed molecular biology platform, to test whether reaction volume reduction in a confined automated system would improve signal and sensitivity. We evaluated the platform’s performance using reference and real casework samples (blood, cigarette butt, saliva and touch DNA) in the context of a 5-fold volume reduction when compared to the routine protocol. This strategy showed distinct advantages over standard treatment, notably increased signal for lower DNA inputs. Importantly, negative casework samples through routine treatment yielded “usable” DNA profiles after amplification using this strategy. This novel approach represents a first proof of concept for a method enabling users to treat limited samples, or to partition routine samples for multiple analyses.</p></div>","PeriodicalId":50435,"journal":{"name":"Forensic Science International-Genetics","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An innovative approach for low input forensic DNA sample analysis using the GlobalFiler™ IQC PCR amplification Kit on the Magelia® platform\",\"authors\":\"\",\"doi\":\"10.1016/j.fsigen.2024.103093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Short Tandem Repeat (STR) markers have been the gold standard for human identification testing in the forensic field for the last few decades. The GlobalFiler™ IQC PCR amplification Kit has shown sensitivity, high power of discrimination and is therefore widely used. Samples with limited DNA quantities remain a significant hurdle for streamlined human forensic identification. Reaction volume reduction in a closed system paired with automation can provide solutions to secure DNA profiles when routine methods fall short. We automated and optimized the GlobalFiler<sup><strong>TM</strong></sup> IQC PCR Amplification Kit on the Magelia®, a closed molecular biology platform, to test whether reaction volume reduction in a confined automated system would improve signal and sensitivity. We evaluated the platform’s performance using reference and real casework samples (blood, cigarette butt, saliva and touch DNA) in the context of a 5-fold volume reduction when compared to the routine protocol. This strategy showed distinct advantages over standard treatment, notably increased signal for lower DNA inputs. Importantly, negative casework samples through routine treatment yielded “usable” DNA profiles after amplification using this strategy. This novel approach represents a first proof of concept for a method enabling users to treat limited samples, or to partition routine samples for multiple analyses.</p></div>\",\"PeriodicalId\":50435,\"journal\":{\"name\":\"Forensic Science International-Genetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forensic Science International-Genetics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1872497324000899\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forensic Science International-Genetics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872497324000899","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

在过去的几十年里,短串联重复(STR)标记一直是法医领域进行人体识别测试的黄金标准。GlobalFiler™ IQC PCR 扩增试剂盒灵敏度高、分辨能力强,因此被广泛使用。DNA 数量有限的样本仍然是简化人类法医鉴定的一大障碍。当常规方法无法满足要求时,在封闭系统中减少反应体积并实现自动化可为确保 DNA 图谱的安全提供解决方案。我们在封闭式分子生物学平台 Magelia® 上对 GlobalFilerTM IQC PCR 扩增试剂盒进行了自动化和优化,以测试在封闭式自动化系统中减少反应体积是否能提高信号和灵敏度。我们使用参考样本和实际案例样本(血液、烟蒂、唾液和触摸 DNA)评估了该平台的性能,与常规方案相比,反应体积减少了 5 倍。与标准处理方法相比,这一策略显示出明显的优势,尤其是在 DNA 输入量较低的情况下信号增强。重要的是,经过常规处理的阴性个案样本在使用该策略扩增后,也能得到 "可用的 "DNA图谱。这种新颖的方法首次验证了用户处理有限样本或分割常规样本进行多重分析的方法的概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An innovative approach for low input forensic DNA sample analysis using the GlobalFiler™ IQC PCR amplification Kit on the Magelia® platform

Short Tandem Repeat (STR) markers have been the gold standard for human identification testing in the forensic field for the last few decades. The GlobalFiler™ IQC PCR amplification Kit has shown sensitivity, high power of discrimination and is therefore widely used. Samples with limited DNA quantities remain a significant hurdle for streamlined human forensic identification. Reaction volume reduction in a closed system paired with automation can provide solutions to secure DNA profiles when routine methods fall short. We automated and optimized the GlobalFilerTM IQC PCR Amplification Kit on the Magelia®, a closed molecular biology platform, to test whether reaction volume reduction in a confined automated system would improve signal and sensitivity. We evaluated the platform’s performance using reference and real casework samples (blood, cigarette butt, saliva and touch DNA) in the context of a 5-fold volume reduction when compared to the routine protocol. This strategy showed distinct advantages over standard treatment, notably increased signal for lower DNA inputs. Importantly, negative casework samples through routine treatment yielded “usable” DNA profiles after amplification using this strategy. This novel approach represents a first proof of concept for a method enabling users to treat limited samples, or to partition routine samples for multiple analyses.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.50
自引率
32.30%
发文量
132
审稿时长
11.3 weeks
期刊介绍: Forensic Science International: Genetics is the premier journal in the field of Forensic Genetics. This branch of Forensic Science can be defined as the application of genetics to human and non-human material (in the sense of a science with the purpose of studying inherited characteristics for the analysis of inter- and intra-specific variations in populations) for the resolution of legal conflicts. The scope of the journal includes: Forensic applications of human polymorphism. Testing of paternity and other family relationships, immigration cases, typing of biological stains and tissues from criminal casework, identification of human remains by DNA testing methodologies. Description of human polymorphisms of forensic interest, with special interest in DNA polymorphisms. Autosomal DNA polymorphisms, mini- and microsatellites (or short tandem repeats, STRs), single nucleotide polymorphisms (SNPs), X and Y chromosome polymorphisms, mtDNA polymorphisms, and any other type of DNA variation with potential forensic applications. Non-human DNA polymorphisms for crime scene investigation. Population genetics of human polymorphisms of forensic interest. Population data, especially from DNA polymorphisms of interest for the solution of forensic problems. DNA typing methodologies and strategies. Biostatistical methods in forensic genetics. Evaluation of DNA evidence in forensic problems (such as paternity or immigration cases, criminal casework, identification), classical and new statistical approaches. Standards in forensic genetics. Recommendations of regulatory bodies concerning methods, markers, interpretation or strategies or proposals for procedural or technical standards. Quality control. Quality control and quality assurance strategies, proficiency testing for DNA typing methodologies. Criminal DNA databases. Technical, legal and statistical issues. General ethical and legal issues related to forensic genetics.
期刊最新文献
Phylogeography of Y-chromosome haplogroup I-P37.2 in Serbian population groups originating from distinct parts of the Balkan Peninsula A preliminary study on detecting human DNA in aquatic environments: Potential of eDNA in forensics Demonstration of potential DNA contamination introduced by laboratory consumables using Fluorescein Human identification of single hair shaft using a mass spectrometry mRNA typing system Large-scale selection of highly informative microhaplotypes for ancestry inference and population specific informativeness
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1