用于皮肤组织语义分割的二维混合增量学习(2DHIL)框架

IF 4.2 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Image and Vision Computing Pub Date : 2024-07-03 DOI:10.1016/j.imavis.2024.105147
{"title":"用于皮肤组织语义分割的二维混合增量学习(2DHIL)框架","authors":"","doi":"10.1016/j.imavis.2024.105147","DOIUrl":null,"url":null,"abstract":"<div><p>This study aims to enhance the robustness and generalization capability of a deep learning transformer model used for segmenting skin carcinomas and tissues through the introduction of incremental learning. Deep learning AI models demonstrate their claimed performance only for tasks and data types for which they are specifically trained. Their performance is severely challenged for the test cases which are not similar to training data thus questioning their robustness and ability to generalize. Moreover, these models require an enormous amount of annotated data for training to achieve desired performance. The availability of large annotated data, particularly for medical applications, is itself a challenge. Despite efforts to alleviate this limitation through techniques like data augmentation, transfer learning, and few-shot training, the challenge persists. To address this, we propose refining the models incrementally as new classes are discovered and more data becomes available, emulating the human learning process. However, deep learning models face the challenge of catastrophic forgetting during incremental training. Therefore, we introduce a two-dimensional hybrid incremental learning framework for segmenting non-melanoma skin cancers and tissues from histopathology images. Our approach involves progressively adding new classes and introducing data of varying specifications to introduce adaptability in the models. We also employ a combination of loss functions to facilitate new learning and mitigate catastrophic forgetting. Our extended experiments demonstrate significant improvements, with an F1 score reaching 91.78, mIoU of 93.00, and an average accuracy of 95%. These findings highlight the effectiveness of our incremental learning strategy in enhancing the robustness and generalization of deep learning segmentation models while mitigating catastrophic forgetting.</p></div>","PeriodicalId":50374,"journal":{"name":"Image and Vision Computing","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0262885624002518/pdfft?md5=d44cd642beec8e071716f174c3ad2a5f&pid=1-s2.0-S0262885624002518-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Two-dimensional hybrid incremental learning (2DHIL) framework for semantic segmentation of skin tissues\",\"authors\":\"\",\"doi\":\"10.1016/j.imavis.2024.105147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study aims to enhance the robustness and generalization capability of a deep learning transformer model used for segmenting skin carcinomas and tissues through the introduction of incremental learning. Deep learning AI models demonstrate their claimed performance only for tasks and data types for which they are specifically trained. Their performance is severely challenged for the test cases which are not similar to training data thus questioning their robustness and ability to generalize. Moreover, these models require an enormous amount of annotated data for training to achieve desired performance. The availability of large annotated data, particularly for medical applications, is itself a challenge. Despite efforts to alleviate this limitation through techniques like data augmentation, transfer learning, and few-shot training, the challenge persists. To address this, we propose refining the models incrementally as new classes are discovered and more data becomes available, emulating the human learning process. However, deep learning models face the challenge of catastrophic forgetting during incremental training. Therefore, we introduce a two-dimensional hybrid incremental learning framework for segmenting non-melanoma skin cancers and tissues from histopathology images. Our approach involves progressively adding new classes and introducing data of varying specifications to introduce adaptability in the models. We also employ a combination of loss functions to facilitate new learning and mitigate catastrophic forgetting. Our extended experiments demonstrate significant improvements, with an F1 score reaching 91.78, mIoU of 93.00, and an average accuracy of 95%. These findings highlight the effectiveness of our incremental learning strategy in enhancing the robustness and generalization of deep learning segmentation models while mitigating catastrophic forgetting.</p></div>\",\"PeriodicalId\":50374,\"journal\":{\"name\":\"Image and Vision Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0262885624002518/pdfft?md5=d44cd642beec8e071716f174c3ad2a5f&pid=1-s2.0-S0262885624002518-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Image and Vision Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0262885624002518\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Image and Vision Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0262885624002518","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在通过引入增量学习,增强用于分割皮肤癌和组织的深度学习变换器模型的鲁棒性和泛化能力。深度学习人工智能模型只有在经过专门训练的任务和数据类型中才能表现出其宣称的性能。在与训练数据不相似的测试案例中,它们的性能会受到严重挑战,因此它们的鲁棒性和泛化能力也会受到质疑。此外,这些模型需要大量注释数据进行训练才能达到预期性能。大量注释数据的可用性本身就是一个挑战,尤其是在医疗应用领域。尽管人们努力通过数据扩增、迁移学习和少量训练等技术来缓解这一限制,但挑战依然存在。为了解决这个问题,我们建议在发现新类别和获得更多数据时逐步完善模型,模仿人类的学习过程。然而,深度学习模型在增量训练过程中面临着灾难性遗忘的挑战。因此,我们引入了一个二维混合增量学习框架,用于从组织病理学图像中分割非黑素瘤皮肤癌和组织。我们的方法包括逐步增加新的类别和引入不同规格的数据,以在模型中引入适应性。我们还采用了多种损失函数来促进新的学习,减少灾难性遗忘。我们的扩展实验显示了显著的改进,F1 分数达到 91.78,mIoU 为 93.00,平均准确率为 95%。这些发现凸显了我们的增量学习策略在增强深度学习分割模型的鲁棒性和泛化方面的有效性,同时减轻了灾难性遗忘。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Two-dimensional hybrid incremental learning (2DHIL) framework for semantic segmentation of skin tissues

This study aims to enhance the robustness and generalization capability of a deep learning transformer model used for segmenting skin carcinomas and tissues through the introduction of incremental learning. Deep learning AI models demonstrate their claimed performance only for tasks and data types for which they are specifically trained. Their performance is severely challenged for the test cases which are not similar to training data thus questioning their robustness and ability to generalize. Moreover, these models require an enormous amount of annotated data for training to achieve desired performance. The availability of large annotated data, particularly for medical applications, is itself a challenge. Despite efforts to alleviate this limitation through techniques like data augmentation, transfer learning, and few-shot training, the challenge persists. To address this, we propose refining the models incrementally as new classes are discovered and more data becomes available, emulating the human learning process. However, deep learning models face the challenge of catastrophic forgetting during incremental training. Therefore, we introduce a two-dimensional hybrid incremental learning framework for segmenting non-melanoma skin cancers and tissues from histopathology images. Our approach involves progressively adding new classes and introducing data of varying specifications to introduce adaptability in the models. We also employ a combination of loss functions to facilitate new learning and mitigate catastrophic forgetting. Our extended experiments demonstrate significant improvements, with an F1 score reaching 91.78, mIoU of 93.00, and an average accuracy of 95%. These findings highlight the effectiveness of our incremental learning strategy in enhancing the robustness and generalization of deep learning segmentation models while mitigating catastrophic forgetting.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Image and Vision Computing
Image and Vision Computing 工程技术-工程:电子与电气
CiteScore
8.50
自引率
8.50%
发文量
143
审稿时长
7.8 months
期刊介绍: Image and Vision Computing has as a primary aim the provision of an effective medium of interchange for the results of high quality theoretical and applied research fundamental to all aspects of image interpretation and computer vision. The journal publishes work that proposes new image interpretation and computer vision methodology or addresses the application of such methods to real world scenes. It seeks to strengthen a deeper understanding in the discipline by encouraging the quantitative comparison and performance evaluation of the proposed methodology. The coverage includes: image interpretation, scene modelling, object recognition and tracking, shape analysis, monitoring and surveillance, active vision and robotic systems, SLAM, biologically-inspired computer vision, motion analysis, stereo vision, document image understanding, character and handwritten text recognition, face and gesture recognition, biometrics, vision-based human-computer interaction, human activity and behavior understanding, data fusion from multiple sensor inputs, image databases.
期刊最新文献
A dictionary learning based unsupervised neural network for single image compressed sensing Unbiased scene graph generation via head-tail cooperative network with self-supervised learning UIR-ES: An unsupervised underwater image restoration framework with equivariance and stein unbiased risk estimator A new deepfake detection model for responding to perception attacks in embodied artificial intelligence Ground4Act: Leveraging visual-language model for collaborative pushing and grasping in clutter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1