Shaowen Wang , Xiaohui Yang , Zhiquan Feng , Jiande Sun , Ju Liu
{"title":"EMCFN:基于边缘的视频帧插值多尺度交叉融合网络","authors":"Shaowen Wang , Xiaohui Yang , Zhiquan Feng , Jiande Sun , Ju Liu","doi":"10.1016/j.jvcir.2024.104226","DOIUrl":null,"url":null,"abstract":"<div><p>Video frame interpolation (VFI) is used to synthesize one or more intermediate frames between two frames in a video sequence to improve the temporal resolution of the video. However, many methods still face challenges when dealing with complex scenes involving high-speed motion, occlusions, and other factors. To address these challenges, we propose an Edge-based Multi-scale Cross Fusion Network (EMCFN) for VFI. We integrate a feature enhancement module (FEM) based on edge information into the U-Net architecture, resulting in richer and more complete feature maps, while also enhancing the preservation of image structure and details. This contributes to generating more accurate and realistic interpolated frames. At the same time, we use a multi-scale cross fusion frame synthesis model (MCFM) composed of three GridNet branches to generate high-quality interpolation frames. We have conducted a series of experiments and the results show that our model exhibits satisfactory performance on different datasets compared with the state-of-the-art methods.</p></div>","PeriodicalId":54755,"journal":{"name":"Journal of Visual Communication and Image Representation","volume":"103 ","pages":"Article 104226"},"PeriodicalIF":2.6000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EMCFN: Edge-based Multi-scale Cross Fusion Network for video frame interpolation\",\"authors\":\"Shaowen Wang , Xiaohui Yang , Zhiquan Feng , Jiande Sun , Ju Liu\",\"doi\":\"10.1016/j.jvcir.2024.104226\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Video frame interpolation (VFI) is used to synthesize one or more intermediate frames between two frames in a video sequence to improve the temporal resolution of the video. However, many methods still face challenges when dealing with complex scenes involving high-speed motion, occlusions, and other factors. To address these challenges, we propose an Edge-based Multi-scale Cross Fusion Network (EMCFN) for VFI. We integrate a feature enhancement module (FEM) based on edge information into the U-Net architecture, resulting in richer and more complete feature maps, while also enhancing the preservation of image structure and details. This contributes to generating more accurate and realistic interpolated frames. At the same time, we use a multi-scale cross fusion frame synthesis model (MCFM) composed of three GridNet branches to generate high-quality interpolation frames. We have conducted a series of experiments and the results show that our model exhibits satisfactory performance on different datasets compared with the state-of-the-art methods.</p></div>\",\"PeriodicalId\":54755,\"journal\":{\"name\":\"Journal of Visual Communication and Image Representation\",\"volume\":\"103 \",\"pages\":\"Article 104226\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Visual Communication and Image Representation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1047320324001822\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Visual Communication and Image Representation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1047320324001822","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
EMCFN: Edge-based Multi-scale Cross Fusion Network for video frame interpolation
Video frame interpolation (VFI) is used to synthesize one or more intermediate frames between two frames in a video sequence to improve the temporal resolution of the video. However, many methods still face challenges when dealing with complex scenes involving high-speed motion, occlusions, and other factors. To address these challenges, we propose an Edge-based Multi-scale Cross Fusion Network (EMCFN) for VFI. We integrate a feature enhancement module (FEM) based on edge information into the U-Net architecture, resulting in richer and more complete feature maps, while also enhancing the preservation of image structure and details. This contributes to generating more accurate and realistic interpolated frames. At the same time, we use a multi-scale cross fusion frame synthesis model (MCFM) composed of three GridNet branches to generate high-quality interpolation frames. We have conducted a series of experiments and the results show that our model exhibits satisfactory performance on different datasets compared with the state-of-the-art methods.
期刊介绍:
The Journal of Visual Communication and Image Representation publishes papers on state-of-the-art visual communication and image representation, with emphasis on novel technologies and theoretical work in this multidisciplinary area of pure and applied research. The field of visual communication and image representation is considered in its broadest sense and covers both digital and analog aspects as well as processing and communication in biological visual systems.