层状碳氢化合物高温弹性的分子动力学研究

IF 3.1 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Carbon Trends Pub Date : 2024-07-09 DOI:10.1016/j.cartre.2024.100376
Franck Polewczyk , Paul Lafourcade , Nicolas Pineau , Christophe Denoual , Gérard L. Vignoles , Jean-Marc Leyssale
{"title":"层状碳氢化合物高温弹性的分子动力学研究","authors":"Franck Polewczyk ,&nbsp;Paul Lafourcade ,&nbsp;Nicolas Pineau ,&nbsp;Christophe Denoual ,&nbsp;Gérard L. Vignoles ,&nbsp;Jean-Marc Leyssale","doi":"10.1016/j.cartre.2024.100376","DOIUrl":null,"url":null,"abstract":"<div><p>The mechanical properties of anisotropic carbons such as the pyrocarbon (pyC) matrices in C/C composites remain poorly documented, especially at elevated temperatures where these materials find most of their applications. We provide here a comprehensive molecular dynamics investigation of the high temperature – up to 4000 K – elastic behavior of six nanoscale pyC models in the context of fast temperature increases, not allowing for major structural modifications such as graphitization. We show that the structure of the most anisotropic and less disordered carbons, like the rough laminar (RL) pyC, is mostly not affected by annealing at the nanosecond timescale, aside from healing unstable defects like two-coordinated atoms at graphene edges. Conversely, highly disordered and less anisotropic carbons like the smooth laminar (SL) pyC show some significant rearrangements at grain boundaries and the development of some limited microporosity. The elastic constants of all highly anisotropic models moderately decrease with increasing temperature, somehow similarly to what is observed for graphite. Elastic constants of the SL pyC show a stronger decrease at high temperature, due to the decrease in density even though all models retain an important degree of stiffness up to 4000 K.</p></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":"16 ","pages":"Article 100376"},"PeriodicalIF":3.1000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667056924000579/pdfft?md5=b6cfe46a2fe84b7f5ba1f94befec5c5b&pid=1-s2.0-S2667056924000579-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A molecular dynamics investigation of laminar pyrocarbons elasticity up to high-temperatures\",\"authors\":\"Franck Polewczyk ,&nbsp;Paul Lafourcade ,&nbsp;Nicolas Pineau ,&nbsp;Christophe Denoual ,&nbsp;Gérard L. Vignoles ,&nbsp;Jean-Marc Leyssale\",\"doi\":\"10.1016/j.cartre.2024.100376\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The mechanical properties of anisotropic carbons such as the pyrocarbon (pyC) matrices in C/C composites remain poorly documented, especially at elevated temperatures where these materials find most of their applications. We provide here a comprehensive molecular dynamics investigation of the high temperature – up to 4000 K – elastic behavior of six nanoscale pyC models in the context of fast temperature increases, not allowing for major structural modifications such as graphitization. We show that the structure of the most anisotropic and less disordered carbons, like the rough laminar (RL) pyC, is mostly not affected by annealing at the nanosecond timescale, aside from healing unstable defects like two-coordinated atoms at graphene edges. Conversely, highly disordered and less anisotropic carbons like the smooth laminar (SL) pyC show some significant rearrangements at grain boundaries and the development of some limited microporosity. The elastic constants of all highly anisotropic models moderately decrease with increasing temperature, somehow similarly to what is observed for graphite. Elastic constants of the SL pyC show a stronger decrease at high temperature, due to the decrease in density even though all models retain an important degree of stiffness up to 4000 K.</p></div>\",\"PeriodicalId\":52629,\"journal\":{\"name\":\"Carbon Trends\",\"volume\":\"16 \",\"pages\":\"Article 100376\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2667056924000579/pdfft?md5=b6cfe46a2fe84b7f5ba1f94befec5c5b&pid=1-s2.0-S2667056924000579-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Trends\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667056924000579\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Trends","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667056924000579","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

各向异性碳(如碳/碳复合材料中的热碳(pyC)基体)的机械特性仍然鲜有记载,尤其是在这些材料应用最广泛的高温环境下。我们在此对六种纳米级 pyC 模型的高温(高达 4000 K)弹性行为进行了全面的分子动力学研究,研究的背景是温度的快速升高,不允许出现石墨化等重大结构变化。我们的研究表明,各向异性最强、无序程度较低的碳,如粗糙层状(RL)pyC,其结构大多不受纳秒级退火的影响,除了石墨烯边缘两配位原子等不稳定缺陷的愈合。相反,像光滑层状(SL)pyC 这样高度无序且各向异性较低的碳则会在晶界处出现一些明显的重排,并形成一些有限的微孔。所有高度各向异性模型的弹性常数都会随着温度的升高而适度降低,这与石墨的情况类似。SL pyC 的弹性常数在高温下的下降幅度更大,这是由于密度的降低,尽管所有模型在 4000 K 以下都保留了很大程度的刚度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A molecular dynamics investigation of laminar pyrocarbons elasticity up to high-temperatures

The mechanical properties of anisotropic carbons such as the pyrocarbon (pyC) matrices in C/C composites remain poorly documented, especially at elevated temperatures where these materials find most of their applications. We provide here a comprehensive molecular dynamics investigation of the high temperature – up to 4000 K – elastic behavior of six nanoscale pyC models in the context of fast temperature increases, not allowing for major structural modifications such as graphitization. We show that the structure of the most anisotropic and less disordered carbons, like the rough laminar (RL) pyC, is mostly not affected by annealing at the nanosecond timescale, aside from healing unstable defects like two-coordinated atoms at graphene edges. Conversely, highly disordered and less anisotropic carbons like the smooth laminar (SL) pyC show some significant rearrangements at grain boundaries and the development of some limited microporosity. The elastic constants of all highly anisotropic models moderately decrease with increasing temperature, somehow similarly to what is observed for graphite. Elastic constants of the SL pyC show a stronger decrease at high temperature, due to the decrease in density even though all models retain an important degree of stiffness up to 4000 K.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Carbon Trends
Carbon Trends Materials Science-Materials Science (miscellaneous)
CiteScore
4.60
自引率
0.00%
发文量
88
审稿时长
77 days
期刊最新文献
Mechanistic insight into the catalytic activities of metallic sites on nitrogen-doped graphene quantum dots for CO2 hydrogenation Fe-based catalytic modification of a birch sawdust-based carbon structure: The effect of process parameters on the final product using an experimental design Evaluation of morphological, structural, thermal, electrical, and chemical composition properties of graphene oxide, and reduced graphene oxide obtained by sequential reduction methods Eco and user–friendly curcumin based nanocomposite forensic powder from coal fly ash for latent fingerprint detection in crime scenes Reduced thermal conductivity of constricted graphene nanoribbons for thermoelectric applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1