利用混沌奇异吸引子实现类比神经网络

Bahadır Utku Kesgin, Uğur Teğin
{"title":"利用混沌奇异吸引子实现类比神经网络","authors":"Bahadır Utku Kesgin, Uğur Teğin","doi":"10.1038/s44172-024-00242-z","DOIUrl":null,"url":null,"abstract":"Machine learning studies need colossal power to process massive datasets and train neural networks to reach high accuracies, which have become gradually unsustainable. Limited by the von Neumann bottleneck, current computing architectures and methods fuel this high power consumption. Here, we present an analog computing method that harnesses chaotic nonlinear attractors to perform machine learning tasks with low power consumption. Inspired by neuromorphic computing, our model is a programmable, versatile, and generalized platform for machine learning tasks. Our mode provides exceptional performance in clustering by utilizing chaotic attractors’ nonlinear mapping and sensitivity to initial conditions. When deployed as a simple analog device, it only requires milliwatt-scale power levels while being on par with current machine learning techniques. We demonstrate low errors and high accuracies with our model for regression and classification-based learning tasks. Bahadır Utku Kesgin and Uğur Teğin propose using a Lorenz attractor as a nonlinear transfer function for neural network nodes. They design a power-efficient electrical circuit and use them for regression and classification test tasks.","PeriodicalId":72644,"journal":{"name":"Communications engineering","volume":" ","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44172-024-00242-z.pdf","citationCount":"0","resultStr":"{\"title\":\"Implementing the analogous neural network using chaotic strange attractors\",\"authors\":\"Bahadır Utku Kesgin, Uğur Teğin\",\"doi\":\"10.1038/s44172-024-00242-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine learning studies need colossal power to process massive datasets and train neural networks to reach high accuracies, which have become gradually unsustainable. Limited by the von Neumann bottleneck, current computing architectures and methods fuel this high power consumption. Here, we present an analog computing method that harnesses chaotic nonlinear attractors to perform machine learning tasks with low power consumption. Inspired by neuromorphic computing, our model is a programmable, versatile, and generalized platform for machine learning tasks. Our mode provides exceptional performance in clustering by utilizing chaotic attractors’ nonlinear mapping and sensitivity to initial conditions. When deployed as a simple analog device, it only requires milliwatt-scale power levels while being on par with current machine learning techniques. We demonstrate low errors and high accuracies with our model for regression and classification-based learning tasks. Bahadır Utku Kesgin and Uğur Teğin propose using a Lorenz attractor as a nonlinear transfer function for neural network nodes. They design a power-efficient electrical circuit and use them for regression and classification test tasks.\",\"PeriodicalId\":72644,\"journal\":{\"name\":\"Communications engineering\",\"volume\":\" \",\"pages\":\"1-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s44172-024-00242-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s44172-024-00242-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44172-024-00242-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

机器学习研究需要巨大的能量来处理海量数据集和训练神经网络,以达到较高的精确度,这已逐渐变得难以为继。受限于冯-诺依曼瓶颈,当前的计算架构和方法助长了这种高能耗。在此,我们提出一种模拟计算方法,利用混沌非线性吸引子以低功耗执行机器学习任务。受神经形态计算的启发,我们的模式是一个可编程、多功能和通用的机器学习任务平台。我们的模式利用混沌吸引子的非线性映射和对初始条件的敏感性,在聚类方面提供了卓越的性能。当作为一个简单的模拟设备部署时,它只需要毫瓦级的功率,同时与当前的机器学习技术相当。我们展示了我们的模型在回归和分类学习任务中的低误差和高准确度。Bahadır Utku Kesgin 和 Uğur Teğin 建议使用洛伦兹吸引子作为神经网络节点的非线性传递函数。他们设计了一种高能效电路,并将其用于回归和分类测试任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Implementing the analogous neural network using chaotic strange attractors
Machine learning studies need colossal power to process massive datasets and train neural networks to reach high accuracies, which have become gradually unsustainable. Limited by the von Neumann bottleneck, current computing architectures and methods fuel this high power consumption. Here, we present an analog computing method that harnesses chaotic nonlinear attractors to perform machine learning tasks with low power consumption. Inspired by neuromorphic computing, our model is a programmable, versatile, and generalized platform for machine learning tasks. Our mode provides exceptional performance in clustering by utilizing chaotic attractors’ nonlinear mapping and sensitivity to initial conditions. When deployed as a simple analog device, it only requires milliwatt-scale power levels while being on par with current machine learning techniques. We demonstrate low errors and high accuracies with our model for regression and classification-based learning tasks. Bahadır Utku Kesgin and Uğur Teğin propose using a Lorenz attractor as a nonlinear transfer function for neural network nodes. They design a power-efficient electrical circuit and use them for regression and classification test tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bio-inspired multi-dimensional deep fusion learning for predicting dynamical aerospace propulsion systems Perspectives on innovative non-fertilizer applications of sewage sludge for mitigating environmental and health hazards Insights from a multiscale framework on metabolic rate variation driving glioblastoma multiforme growth and invasion Ultra-lightweight rechargeable battery with enhanced gravimetric energy densities >750 Wh kg−1 in lithium–sulfur pouch cell An energy-resolving photon-counting X-ray detector for computed tomography combining silicon-photomultiplier arrays and scintillation crystals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1