Hong Zhu, Xiaoxia Liu, Lin Huang, Zhaosong Lu, Jian Lu, Michael K. Ng
{"title":"多维图像复原中张量低阶和稀疏模型的增量拉格朗日法","authors":"Hong Zhu, Xiaoxia Liu, Lin Huang, Zhaosong Lu, Jian Lu, Michael K. Ng","doi":"10.1007/s10444-024-10170-3","DOIUrl":null,"url":null,"abstract":"<div><p>Multi-dimensional images can be viewed as tensors and have often embedded a low-rankness property that can be evaluated by tensor low-rank measures. In this paper, we first introduce a tensor low-rank and sparsity measure and then propose low-rank and sparsity models for tensor completion, tensor robust principal component analysis, and tensor denoising. The resulting tensor recovery models are further solved by the augmented Lagrangian method with a convergence guarantee. And its augmented Lagrangian subproblem is computed by the proximal alternative method, in which each variable has a closed-form solution. Numerical experiments on several multi-dimensional image recovery applications show the superiority of the proposed methods over the state-of-the-art methods in terms of several quantitative quality indices and visual quality.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":"50 4","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Augmented Lagrangian method for tensor low-rank and sparsity models in multi-dimensional image recovery\",\"authors\":\"Hong Zhu, Xiaoxia Liu, Lin Huang, Zhaosong Lu, Jian Lu, Michael K. Ng\",\"doi\":\"10.1007/s10444-024-10170-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Multi-dimensional images can be viewed as tensors and have often embedded a low-rankness property that can be evaluated by tensor low-rank measures. In this paper, we first introduce a tensor low-rank and sparsity measure and then propose low-rank and sparsity models for tensor completion, tensor robust principal component analysis, and tensor denoising. The resulting tensor recovery models are further solved by the augmented Lagrangian method with a convergence guarantee. And its augmented Lagrangian subproblem is computed by the proximal alternative method, in which each variable has a closed-form solution. Numerical experiments on several multi-dimensional image recovery applications show the superiority of the proposed methods over the state-of-the-art methods in terms of several quantitative quality indices and visual quality.</p></div>\",\"PeriodicalId\":50869,\"journal\":{\"name\":\"Advances in Computational Mathematics\",\"volume\":\"50 4\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Computational Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10444-024-10170-3\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10444-024-10170-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Augmented Lagrangian method for tensor low-rank and sparsity models in multi-dimensional image recovery
Multi-dimensional images can be viewed as tensors and have often embedded a low-rankness property that can be evaluated by tensor low-rank measures. In this paper, we first introduce a tensor low-rank and sparsity measure and then propose low-rank and sparsity models for tensor completion, tensor robust principal component analysis, and tensor denoising. The resulting tensor recovery models are further solved by the augmented Lagrangian method with a convergence guarantee. And its augmented Lagrangian subproblem is computed by the proximal alternative method, in which each variable has a closed-form solution. Numerical experiments on several multi-dimensional image recovery applications show the superiority of the proposed methods over the state-of-the-art methods in terms of several quantitative quality indices and visual quality.
期刊介绍:
Advances in Computational Mathematics publishes high quality, accessible and original articles at the forefront of computational and applied mathematics, with a clear potential for impact across the sciences. The journal emphasizes three core areas: approximation theory and computational geometry; numerical analysis, modelling and simulation; imaging, signal processing and data analysis.
This journal welcomes papers that are accessible to a broad audience in the mathematical sciences and that show either an advance in computational methodology or a novel scientific application area, or both. Methods papers should rely on rigorous analysis and/or convincing numerical studies.