多维图像复原中张量低阶和稀疏模型的增量拉格朗日法

IF 1.7 3区 数学 Q2 MATHEMATICS, APPLIED Advances in Computational Mathematics Pub Date : 2024-07-16 DOI:10.1007/s10444-024-10170-3
Hong Zhu, Xiaoxia Liu, Lin Huang, Zhaosong Lu, Jian Lu, Michael K. Ng
{"title":"多维图像复原中张量低阶和稀疏模型的增量拉格朗日法","authors":"Hong Zhu,&nbsp;Xiaoxia Liu,&nbsp;Lin Huang,&nbsp;Zhaosong Lu,&nbsp;Jian Lu,&nbsp;Michael K. Ng","doi":"10.1007/s10444-024-10170-3","DOIUrl":null,"url":null,"abstract":"<div><p>Multi-dimensional images can be viewed as tensors and have often embedded a low-rankness property that can be evaluated by tensor low-rank measures. In this paper, we first introduce a tensor low-rank and sparsity measure and then propose low-rank and sparsity models for tensor completion, tensor robust principal component analysis, and tensor denoising. The resulting tensor recovery models are further solved by the augmented Lagrangian method with a convergence guarantee. And its augmented Lagrangian subproblem is computed by the proximal alternative method, in which each variable has a closed-form solution. Numerical experiments on several multi-dimensional image recovery applications show the superiority of the proposed methods over the state-of-the-art methods in terms of several quantitative quality indices and visual quality.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":"50 4","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Augmented Lagrangian method for tensor low-rank and sparsity models in multi-dimensional image recovery\",\"authors\":\"Hong Zhu,&nbsp;Xiaoxia Liu,&nbsp;Lin Huang,&nbsp;Zhaosong Lu,&nbsp;Jian Lu,&nbsp;Michael K. Ng\",\"doi\":\"10.1007/s10444-024-10170-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Multi-dimensional images can be viewed as tensors and have often embedded a low-rankness property that can be evaluated by tensor low-rank measures. In this paper, we first introduce a tensor low-rank and sparsity measure and then propose low-rank and sparsity models for tensor completion, tensor robust principal component analysis, and tensor denoising. The resulting tensor recovery models are further solved by the augmented Lagrangian method with a convergence guarantee. And its augmented Lagrangian subproblem is computed by the proximal alternative method, in which each variable has a closed-form solution. Numerical experiments on several multi-dimensional image recovery applications show the superiority of the proposed methods over the state-of-the-art methods in terms of several quantitative quality indices and visual quality.</p></div>\",\"PeriodicalId\":50869,\"journal\":{\"name\":\"Advances in Computational Mathematics\",\"volume\":\"50 4\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Computational Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10444-024-10170-3\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10444-024-10170-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

多维图像可视为张量,通常蕴含着低rankness特性,可通过张量低rank度量进行评估。本文首先介绍了一种张量低阶和稀疏度量,然后提出了用于张量补全、张量鲁棒主成分分析和张量去噪的低阶和稀疏模型。由此产生的张量恢复模型将进一步用具有收敛性保证的增强拉格朗日法求解。其增强拉格朗日子问题通过近似替代法计算,其中每个变量都有一个闭式解。在多个多维图像复原应用中进行的数值实验表明,就多个定量质量指标和视觉质量而言,所提出的方法优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Augmented Lagrangian method for tensor low-rank and sparsity models in multi-dimensional image recovery

Multi-dimensional images can be viewed as tensors and have often embedded a low-rankness property that can be evaluated by tensor low-rank measures. In this paper, we first introduce a tensor low-rank and sparsity measure and then propose low-rank and sparsity models for tensor completion, tensor robust principal component analysis, and tensor denoising. The resulting tensor recovery models are further solved by the augmented Lagrangian method with a convergence guarantee. And its augmented Lagrangian subproblem is computed by the proximal alternative method, in which each variable has a closed-form solution. Numerical experiments on several multi-dimensional image recovery applications show the superiority of the proposed methods over the state-of-the-art methods in terms of several quantitative quality indices and visual quality.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
5.90%
发文量
68
审稿时长
3 months
期刊介绍: Advances in Computational Mathematics publishes high quality, accessible and original articles at the forefront of computational and applied mathematics, with a clear potential for impact across the sciences. The journal emphasizes three core areas: approximation theory and computational geometry; numerical analysis, modelling and simulation; imaging, signal processing and data analysis. This journal welcomes papers that are accessible to a broad audience in the mathematical sciences and that show either an advance in computational methodology or a novel scientific application area, or both. Methods papers should rely on rigorous analysis and/or convincing numerical studies.
期刊最新文献
Parametric model order reduction for a wildland fire model via the shifted POD-based deep learning method A scaling fractional asymptotical regularization method for linear inverse problems A difference finite element method based on nonconforming finite element methods for 3D elliptic problems An all-frequency stable integral system for Maxwell’s equations in 3-D penetrable media: continuous and discrete model analysis A reduced-order model for advection-dominated problems based on the Radon Cumulative Distribution Transform
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1