利用金属-液体耦合克服声能障碍的巨型三发电装置

IF 38.6 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Joule Pub Date : 2024-09-18 DOI:10.1016/j.joule.2024.06.016
Youngwook Chung , Jang-Mook Jeong , Joon-Ha Hwang , Young-Jun Kim , Byung-Joon Park , Daniel S. Cho , Youngmin Cho , Su-Jeong Suh , Byung-Ok Choi , Hyun-moon Park , Hong-Joon Yoon , Sang-Woo Kim
{"title":"利用金属-液体耦合克服声能障碍的巨型三发电装置","authors":"Youngwook Chung ,&nbsp;Jang-Mook Jeong ,&nbsp;Joon-Ha Hwang ,&nbsp;Young-Jun Kim ,&nbsp;Byung-Joon Park ,&nbsp;Daniel S. Cho ,&nbsp;Youngmin Cho ,&nbsp;Su-Jeong Suh ,&nbsp;Byung-Ok Choi ,&nbsp;Hyun-moon Park ,&nbsp;Hong-Joon Yoon ,&nbsp;Sang-Woo Kim","doi":"10.1016/j.joule.2024.06.016","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Hermetically sealed titanium (Ti) packaging provides protection for implantable medical devices, but it hinders reliable </span>wireless power transfer<span> to these devices. We present a miniaturized device that utilizes ultrasound-induced vibrations in Ti, mediated by liquid space, for efficient triboelectric energy harvesting<span>. Unlike the conventional ultrasound-driven triboelectric nanogenerator, which induces contact electrification through multiple modes, the Ti-packaged device generates vibrations of the triboelectric membrane in a single mode, facilitating effective energy transfer. The incorporation of the Ti packaging leads to a significant increase in power density, up to 310% compared with the absence of it when measured under a tissue-mimicking material, and it enables long-term stability and Bluetooth communication </span></span></span><em>in vivo</em><span>. These findings represent the first technology that enhances power transmission characteristics through a Ti layer. We believe that this technology will accelerate the development of smaller, multifunctional, and long-lasting implantable medical devices.</span></p></div>","PeriodicalId":343,"journal":{"name":"Joule","volume":"8 9","pages":"Pages 2681-2695"},"PeriodicalIF":38.6000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gigantic triboelectric power generation overcoming acoustic energy barrier using metal-liquid coupling\",\"authors\":\"Youngwook Chung ,&nbsp;Jang-Mook Jeong ,&nbsp;Joon-Ha Hwang ,&nbsp;Young-Jun Kim ,&nbsp;Byung-Joon Park ,&nbsp;Daniel S. Cho ,&nbsp;Youngmin Cho ,&nbsp;Su-Jeong Suh ,&nbsp;Byung-Ok Choi ,&nbsp;Hyun-moon Park ,&nbsp;Hong-Joon Yoon ,&nbsp;Sang-Woo Kim\",\"doi\":\"10.1016/j.joule.2024.06.016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>Hermetically sealed titanium (Ti) packaging provides protection for implantable medical devices, but it hinders reliable </span>wireless power transfer<span> to these devices. We present a miniaturized device that utilizes ultrasound-induced vibrations in Ti, mediated by liquid space, for efficient triboelectric energy harvesting<span>. Unlike the conventional ultrasound-driven triboelectric nanogenerator, which induces contact electrification through multiple modes, the Ti-packaged device generates vibrations of the triboelectric membrane in a single mode, facilitating effective energy transfer. The incorporation of the Ti packaging leads to a significant increase in power density, up to 310% compared with the absence of it when measured under a tissue-mimicking material, and it enables long-term stability and Bluetooth communication </span></span></span><em>in vivo</em><span>. These findings represent the first technology that enhances power transmission characteristics through a Ti layer. We believe that this technology will accelerate the development of smaller, multifunctional, and long-lasting implantable medical devices.</span></p></div>\",\"PeriodicalId\":343,\"journal\":{\"name\":\"Joule\",\"volume\":\"8 9\",\"pages\":\"Pages 2681-2695\"},\"PeriodicalIF\":38.6000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Joule\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2542435124002927\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Joule","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542435124002927","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

密封钛(Ti)包装为植入式医疗设备提供了保护,但却阻碍了这些设备可靠的无线电力传输。我们介绍了一种利用超声波诱导钛振动的微型装置,该装置由液态空间介导,可实现高效的三电能采集。传统的超声波驱动三电纳米发生器通过多种模式诱导接触通电,与之不同的是,钛封装器件只通过单一模式产生三电膜振动,从而促进了有效的能量传输。加入钛封装后,功率密度显著增加,在组织模拟材料下测量时,功率密度比未加入钛封装时增加了 310%,并实现了长期稳定性和体内蓝牙通信。这些发现代表了首个通过钛层增强功率传输特性的技术。我们相信,这项技术将加速小型、多功能和长效植入式医疗设备的开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Gigantic triboelectric power generation overcoming acoustic energy barrier using metal-liquid coupling

Hermetically sealed titanium (Ti) packaging provides protection for implantable medical devices, but it hinders reliable wireless power transfer to these devices. We present a miniaturized device that utilizes ultrasound-induced vibrations in Ti, mediated by liquid space, for efficient triboelectric energy harvesting. Unlike the conventional ultrasound-driven triboelectric nanogenerator, which induces contact electrification through multiple modes, the Ti-packaged device generates vibrations of the triboelectric membrane in a single mode, facilitating effective energy transfer. The incorporation of the Ti packaging leads to a significant increase in power density, up to 310% compared with the absence of it when measured under a tissue-mimicking material, and it enables long-term stability and Bluetooth communication in vivo. These findings represent the first technology that enhances power transmission characteristics through a Ti layer. We believe that this technology will accelerate the development of smaller, multifunctional, and long-lasting implantable medical devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Joule
Joule Energy-General Energy
CiteScore
53.10
自引率
2.00%
发文量
198
期刊介绍: Joule is a sister journal to Cell that focuses on research, analysis, and ideas related to sustainable energy. It aims to address the global challenge of the need for more sustainable energy solutions. Joule is a forward-looking journal that bridges disciplines and scales of energy research. It connects researchers and analysts working on scientific, technical, economic, policy, and social challenges related to sustainable energy. The journal covers a wide range of energy research, from fundamental laboratory studies on energy conversion and storage to global-level analysis. Joule aims to highlight and amplify the implications, challenges, and opportunities of novel energy research for different groups in the field.
期刊最新文献
Spin regulation through chirality in catalysis Battery health management in the era of big field data Anthracene-based energy storage Technoeconomic analysis of perovskite/silicon tandem solar modules De-doping engineering for efficient and heat-stable perovskite solar cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1