金属团簇和有机连接体上的失焦轨道可促进金属有机框架中的电荷转移,从而实现二氧化碳的整体光氧化。

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2024-11-18 Epub Date: 2024-10-10 DOI:10.1002/anie.202411508
Hai-Xiong Liu, Zi-Jian Zhou, Lei Xie, Chen Liu, Lei Cai, Xin-Ping Wu, Tian-Fu Liu
{"title":"金属团簇和有机连接体上的失焦轨道可促进金属有机框架中的电荷转移,从而实现二氧化碳的整体光氧化。","authors":"Hai-Xiong Liu, Zi-Jian Zhou, Lei Xie, Chen Liu, Lei Cai, Xin-Ping Wu, Tian-Fu Liu","doi":"10.1002/anie.202411508","DOIUrl":null,"url":null,"abstract":"<p><p>The conversion of CO<sub>2</sub> to C<sub>2</sub> through photocatalysis poses significant challenges, and one of the biggest hurdles stems from the sluggishness of the multi-electron transfer process. Herein, taking metal-organic framework (MOF, PFC-98) as a model photocatalyst, we report a new strategy to facilitate charge separation. This strategy involves matching the energy levels of the lowest unoccupied node and linker orbitals of the MOF, thereby creating the lowest unoccupied crystal orbital (LUCO) delocalized over both the node and linker. This feature enables the direct excitation of electrons from photosensitive linker to the catalytic centers, achieving a direct charge transfer (DCT) pathway. For comparison, an isoreticular MOF (PFC-6) based on analogue components but with far apart frontier energy level was synthesized. The delocalized LUCO caused the presence of an internal charge-separated (ICS) state, prolonging the excited state lifetime and further inhibiting the electron-hole recombination. The presence of ICS state prolongs the excited state lifetime and further inhibits the electron-hole recombination. Moreover, it also induced abundant electrons accumulating at the catalytic sites, enabling the multi-electron transfer process. As a result, the material featuring delocalized LUCO exhibits superior overall CO<sub>2</sub> photocatalytic performance with high C<sub>2</sub> production yield and selectivity.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":null,"pages":null},"PeriodicalIF":16.1000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Delocalized Orbitals over Metal Clusters and Organic Linkers Enable Boosted Charge Transfer in Metal-Organic Framework for Overall CO<sub>2</sub> Photoreduction.\",\"authors\":\"Hai-Xiong Liu, Zi-Jian Zhou, Lei Xie, Chen Liu, Lei Cai, Xin-Ping Wu, Tian-Fu Liu\",\"doi\":\"10.1002/anie.202411508\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The conversion of CO<sub>2</sub> to C<sub>2</sub> through photocatalysis poses significant challenges, and one of the biggest hurdles stems from the sluggishness of the multi-electron transfer process. Herein, taking metal-organic framework (MOF, PFC-98) as a model photocatalyst, we report a new strategy to facilitate charge separation. This strategy involves matching the energy levels of the lowest unoccupied node and linker orbitals of the MOF, thereby creating the lowest unoccupied crystal orbital (LUCO) delocalized over both the node and linker. This feature enables the direct excitation of electrons from photosensitive linker to the catalytic centers, achieving a direct charge transfer (DCT) pathway. For comparison, an isoreticular MOF (PFC-6) based on analogue components but with far apart frontier energy level was synthesized. The delocalized LUCO caused the presence of an internal charge-separated (ICS) state, prolonging the excited state lifetime and further inhibiting the electron-hole recombination. The presence of ICS state prolongs the excited state lifetime and further inhibits the electron-hole recombination. Moreover, it also induced abundant electrons accumulating at the catalytic sites, enabling the multi-electron transfer process. As a result, the material featuring delocalized LUCO exhibits superior overall CO<sub>2</sub> photocatalytic performance with high C<sub>2</sub> production yield and selectivity.</p>\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.1000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/anie.202411508\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202411508","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/10 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

通过光催化将 CO2 转化为 C2 面临着巨大挑战,其中最大的障碍之一就是多电子转移过程的迟缓。在此,我们以金属有机框架(PFC-98)为光催化剂模型,报告了一种促进电荷分离的新策略。该策略包括匹配 MOF 的最低未占据节点轨道和链接轨道的能级,从而在节点和链接轨道上形成分散的最低未占据晶体轨道 (LUCO)。这一特点使电子能够从光敏链接器直接激发到催化中心,实现了直接电荷转移(DCT)途径。为了进行比较,我们合成了一种基于类似成分但前沿能级相差甚远的等距 MOF(PFC-6)。分散的 LUCO 导致了内部电荷分离态(ICS)的存在,从而延长了激发态的寿命并进一步抑制了电子-空穴重组。内部电荷分离态(ICS)的存在延长了激发态的寿命,并进一步抑制了电子-空穴重组。此外,它还促使大量电子在催化位点聚集,从而实现了多电子转移过程。因此,具有去局域 LUCO 的材料表现出卓越的整体 CO2 光催化性能,具有较高的 C2 产率和选择性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Delocalized Orbitals over Metal Clusters and Organic Linkers Enable Boosted Charge Transfer in Metal-Organic Framework for Overall CO2 Photoreduction.

The conversion of CO2 to C2 through photocatalysis poses significant challenges, and one of the biggest hurdles stems from the sluggishness of the multi-electron transfer process. Herein, taking metal-organic framework (MOF, PFC-98) as a model photocatalyst, we report a new strategy to facilitate charge separation. This strategy involves matching the energy levels of the lowest unoccupied node and linker orbitals of the MOF, thereby creating the lowest unoccupied crystal orbital (LUCO) delocalized over both the node and linker. This feature enables the direct excitation of electrons from photosensitive linker to the catalytic centers, achieving a direct charge transfer (DCT) pathway. For comparison, an isoreticular MOF (PFC-6) based on analogue components but with far apart frontier energy level was synthesized. The delocalized LUCO caused the presence of an internal charge-separated (ICS) state, prolonging the excited state lifetime and further inhibiting the electron-hole recombination. The presence of ICS state prolongs the excited state lifetime and further inhibits the electron-hole recombination. Moreover, it also induced abundant electrons accumulating at the catalytic sites, enabling the multi-electron transfer process. As a result, the material featuring delocalized LUCO exhibits superior overall CO2 photocatalytic performance with high C2 production yield and selectivity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
Precise Manipulation of Electron Transfers in Clustered Five Redox Sites. A Strep-Tag Imprinted Polymer Platform for Heterogenous Bio(electro)catalysis. Delocalized Orbitals over Metal Clusters and Organic Linkers Enable Boosted Charge Transfer in Metal-Organic Framework for Overall CO2 Photoreduction. Directional Electron Flow in a Selenoviologen-Based Tetracationic Cyclophane for Enhanced Visible-Light-Driven Hydrogen Evolution. Fully sp2 Carbon-Conjugated Covalent Organic Frameworks with Multiple Active Sites for Advanced Lithium-Ion Battery Cathodes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1