{"title":"氨基肽酶 N 2 基因的沉默揭示了木虱获得 Cry1Ac 抗性的权衡。","authors":"Zhuohong Lv, Shuwen Yu, Yafei Zhao, Zhongxia Yang","doi":"10.1002/arch.22131","DOIUrl":null,"url":null,"abstract":"<p><i>Bacillus thuringiensis</i> (Bt) is widely used as a biopesticide worldwide. To date, at least eight pest species have been found to be resistant to Bt in the field. As the first pest that was reported having resistance to Bt in the field, considerable research has been done on the mechanisms of Bt resistance in <i>Plutella xylostella</i>. However, whether the acquisition of Bt resistance by <i>P. xylostella</i> comes at a fitness cost is also a valuable question. In this study, <i>Aminopeptidase-N 2</i> (<i>APN2</i>), a Cry toxin receptor gene of <i>P. xylostella</i>, was knocked down by RNA interference, resulting in improved resistance to Cry1Ac. It was also found that larval mortality of <i>APN2</i> knockdown <i>P. xylostella</i> was significantly higher than that of the control, while the pupation rate, pupal weight, eclosion rate, fecundity (egg/female), hatchability, and female adult longevity were significantly lower in <i>APN2</i> knockdown <i>P. xylostella</i> than in the control. These results illustrate that if Cry1Ac resistance was obtained only through the reduction of <i>APN2</i> expression, <i>P. xylostella</i> would need to incur some fitness costs for it.</p>","PeriodicalId":8281,"journal":{"name":"Archives of Insect Biochemistry and Physiology","volume":"116 3","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Silence of Aminopeptidase N 2 gene reveals the trade-offs for acquiring Cry1Ac resistance in Plutella xylostella\",\"authors\":\"Zhuohong Lv, Shuwen Yu, Yafei Zhao, Zhongxia Yang\",\"doi\":\"10.1002/arch.22131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><i>Bacillus thuringiensis</i> (Bt) is widely used as a biopesticide worldwide. To date, at least eight pest species have been found to be resistant to Bt in the field. As the first pest that was reported having resistance to Bt in the field, considerable research has been done on the mechanisms of Bt resistance in <i>Plutella xylostella</i>. However, whether the acquisition of Bt resistance by <i>P. xylostella</i> comes at a fitness cost is also a valuable question. In this study, <i>Aminopeptidase-N 2</i> (<i>APN2</i>), a Cry toxin receptor gene of <i>P. xylostella</i>, was knocked down by RNA interference, resulting in improved resistance to Cry1Ac. It was also found that larval mortality of <i>APN2</i> knockdown <i>P. xylostella</i> was significantly higher than that of the control, while the pupation rate, pupal weight, eclosion rate, fecundity (egg/female), hatchability, and female adult longevity were significantly lower in <i>APN2</i> knockdown <i>P. xylostella</i> than in the control. These results illustrate that if Cry1Ac resistance was obtained only through the reduction of <i>APN2</i> expression, <i>P. xylostella</i> would need to incur some fitness costs for it.</p>\",\"PeriodicalId\":8281,\"journal\":{\"name\":\"Archives of Insect Biochemistry and Physiology\",\"volume\":\"116 3\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Insect Biochemistry and Physiology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/arch.22131\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Insect Biochemistry and Physiology","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/arch.22131","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Silence of Aminopeptidase N 2 gene reveals the trade-offs for acquiring Cry1Ac resistance in Plutella xylostella
Bacillus thuringiensis (Bt) is widely used as a biopesticide worldwide. To date, at least eight pest species have been found to be resistant to Bt in the field. As the first pest that was reported having resistance to Bt in the field, considerable research has been done on the mechanisms of Bt resistance in Plutella xylostella. However, whether the acquisition of Bt resistance by P. xylostella comes at a fitness cost is also a valuable question. In this study, Aminopeptidase-N 2 (APN2), a Cry toxin receptor gene of P. xylostella, was knocked down by RNA interference, resulting in improved resistance to Cry1Ac. It was also found that larval mortality of APN2 knockdown P. xylostella was significantly higher than that of the control, while the pupation rate, pupal weight, eclosion rate, fecundity (egg/female), hatchability, and female adult longevity were significantly lower in APN2 knockdown P. xylostella than in the control. These results illustrate that if Cry1Ac resistance was obtained only through the reduction of APN2 expression, P. xylostella would need to incur some fitness costs for it.
期刊介绍:
Archives of Insect Biochemistry and Physiology is an international journal that publishes articles in English that are of interest to insect biochemists and physiologists. Generally these articles will be in, or related to, one of the following subject areas: Behavior, Bioinformatics, Carbohydrates, Cell Line Development, Cell Signalling, Development, Drug Discovery, Endocrinology, Enzymes, Lipids, Molecular Biology, Neurobiology, Nucleic Acids, Nutrition, Peptides, Pharmacology, Pollinators, Proteins, Toxicology. Archives will publish only original articles. Articles that are confirmatory in nature or deal with analytical methods previously described will not be accepted.