{"title":"区间值模糊环境下的离岸 CCUS 项目投资决策框架。","authors":"Qinghua Mao, Yaqing Gao, Jiacheng Fan","doi":"10.1080/09593330.2024.2376291","DOIUrl":null,"url":null,"abstract":"<p><p>Carbon Capture, Utilization and Storage (CCUS) is an indispensable technology for achieving a net-zero emission society. The offshore CCUS project is still in its infancy. To promote its sustainable development, developing a comprehensive framework for investment decision-making is very crucial. First, a comprehensive evaluation criteria system is established. Second, in order to characterize the ambiguity and uncertainty of information in the process of making decisions, the interval-valued fermatean fuzzy set (IVFFS) is introduced, and the extended variance method of IVFFS is proposed to systematically calculate the weights of experts. Then, the power weighted average (PWA) operator based similarity measure of IVFFSs is developed to aggregate different expert information. Meanwhile, the fuzzy-weighted zero-inconsistency (FWZIC) method and the method based on the removal effects of criteria (MEREC) are used to determine the criteria weights. In addition, considering the interactions between the criteria, we introduce the Hamacher operator into the measurement of alternatives and ranking according to the compromise solution (MARCOS) method to select the optimal alternative in the interval-valued fermatean fuzzy (IVFF) environment. The suggested framework is then used to analyse a case study. After that, sensitivity and comparative analyses are conducted to confirm its robustness and viability. This study creates a practical investment framework for offshore CCUS projects, identifies a number of investment-sensitive criteria and provides management insights. The proposed framework expands the methods and applications in the field of decision-making and provides a scientific approach for investment decision-making in offshore CCUS projects, which can be a useful reference for managers.</p>","PeriodicalId":12009,"journal":{"name":"Environmental Technology","volume":" ","pages":"1112-1137"},"PeriodicalIF":2.2000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An investment decision framework for offshore CCUS project under interval-valued fermatean fuzzy environment.\",\"authors\":\"Qinghua Mao, Yaqing Gao, Jiacheng Fan\",\"doi\":\"10.1080/09593330.2024.2376291\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Carbon Capture, Utilization and Storage (CCUS) is an indispensable technology for achieving a net-zero emission society. The offshore CCUS project is still in its infancy. To promote its sustainable development, developing a comprehensive framework for investment decision-making is very crucial. First, a comprehensive evaluation criteria system is established. Second, in order to characterize the ambiguity and uncertainty of information in the process of making decisions, the interval-valued fermatean fuzzy set (IVFFS) is introduced, and the extended variance method of IVFFS is proposed to systematically calculate the weights of experts. Then, the power weighted average (PWA) operator based similarity measure of IVFFSs is developed to aggregate different expert information. Meanwhile, the fuzzy-weighted zero-inconsistency (FWZIC) method and the method based on the removal effects of criteria (MEREC) are used to determine the criteria weights. In addition, considering the interactions between the criteria, we introduce the Hamacher operator into the measurement of alternatives and ranking according to the compromise solution (MARCOS) method to select the optimal alternative in the interval-valued fermatean fuzzy (IVFF) environment. The suggested framework is then used to analyse a case study. After that, sensitivity and comparative analyses are conducted to confirm its robustness and viability. This study creates a practical investment framework for offshore CCUS projects, identifies a number of investment-sensitive criteria and provides management insights. The proposed framework expands the methods and applications in the field of decision-making and provides a scientific approach for investment decision-making in offshore CCUS projects, which can be a useful reference for managers.</p>\",\"PeriodicalId\":12009,\"journal\":{\"name\":\"Environmental Technology\",\"volume\":\" \",\"pages\":\"1112-1137\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Technology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/09593330.2024.2376291\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/09593330.2024.2376291","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/17 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
An investment decision framework for offshore CCUS project under interval-valued fermatean fuzzy environment.
Carbon Capture, Utilization and Storage (CCUS) is an indispensable technology for achieving a net-zero emission society. The offshore CCUS project is still in its infancy. To promote its sustainable development, developing a comprehensive framework for investment decision-making is very crucial. First, a comprehensive evaluation criteria system is established. Second, in order to characterize the ambiguity and uncertainty of information in the process of making decisions, the interval-valued fermatean fuzzy set (IVFFS) is introduced, and the extended variance method of IVFFS is proposed to systematically calculate the weights of experts. Then, the power weighted average (PWA) operator based similarity measure of IVFFSs is developed to aggregate different expert information. Meanwhile, the fuzzy-weighted zero-inconsistency (FWZIC) method and the method based on the removal effects of criteria (MEREC) are used to determine the criteria weights. In addition, considering the interactions between the criteria, we introduce the Hamacher operator into the measurement of alternatives and ranking according to the compromise solution (MARCOS) method to select the optimal alternative in the interval-valued fermatean fuzzy (IVFF) environment. The suggested framework is then used to analyse a case study. After that, sensitivity and comparative analyses are conducted to confirm its robustness and viability. This study creates a practical investment framework for offshore CCUS projects, identifies a number of investment-sensitive criteria and provides management insights. The proposed framework expands the methods and applications in the field of decision-making and provides a scientific approach for investment decision-making in offshore CCUS projects, which can be a useful reference for managers.
期刊介绍:
Environmental Technology is a leading journal for the rapid publication of science and technology papers on a wide range of topics in applied environmental studies, from environmental engineering to environmental biotechnology, the circular economy, municipal and industrial wastewater management, drinking-water treatment, air- and water-pollution control, solid-waste management, industrial hygiene and associated technologies.
Environmental Technology is intended to provide rapid publication of new developments in environmental technology. The journal has an international readership with a broad scientific base. Contributions will be accepted from scientists and engineers in industry, government and universities. Accepted manuscripts are generally published within four months.
Please note that Environmental Technology does not publish any review papers unless for a specified special issue which is decided by the Editor. Please do submit your review papers to our sister journal Environmental Technology Reviews at http://www.tandfonline.com/toc/tetr20/current