脚底的纹理感知:行走、坐姿和手感之间的比较。

IF 2.1 3区 医学 Q3 NEUROSCIENCES Journal of neurophysiology Pub Date : 2024-09-01 Epub Date: 2024-07-17 DOI:10.1152/jn.00170.2024
Luke D Cleland, Mia Rupani, Celia R Blaise, Toby J Ellmers, Hannes P Saal
{"title":"脚底的纹理感知:行走、坐姿和手感之间的比较。","authors":"Luke D Cleland, Mia Rupani, Celia R Blaise, Toby J Ellmers, Hannes P Saal","doi":"10.1152/jn.00170.2024","DOIUrl":null,"url":null,"abstract":"<p><p>We frequently interact with textured surfaces with both our feet and hands. Like texture's importance for grasping, texture perception via the foot sole might provide important signals about the stability of a surface, aiding in maintaining balance. However, how textures are perceived by the foot, and especially under the high forces experienced during walking, is unknown. The current study builds on extensive research investigating texture perception at the hand by presenting everyday textures to the foot while stepping onto them, exploring them with the foot while sitting, and exploring them with the hand. Participants rated each texture along three perceptual dimensions: roughness, hardness, and stickiness. Participants also rated how stable their posture felt when standing upon each texture. Results show that perceptual ratings of each textural dimension were highly correlated across conditions. Hardness exhibited the greatest consistency and stickiness the weakest. Moreover, correlations between stepping and exploration with the foot were lower than those between exploration with the foot and exploration with the hand, suggesting that mode of interaction (high vs. low force) impacts perception more than body region used (foot vs. hand). On an individual level, correlations between conditions were higher than those between participants, suggesting that differences are greater between individuals than between mode of interaction or body region. When investigating the relationship to perceived stability, only hardness contributed significantly, with harder surfaces rated as more stable. Overall, tactile perception appears consistent across body regions and interaction modes, although differences in perception are greater during walking.<b>NEW & NOTEWORTHY</b> We frequently interact with textured surfaces using our feet, but little is known about how textures on the foot sole are perceived as compared with the hand. Here, we show that roughness, hardness, and stickiness ratings are broadly consistent when stepping on textures, exploring them with the foot sole, or with the hand. Hardness also contributes to perceived stability.</p>","PeriodicalId":16563,"journal":{"name":"Journal of neurophysiology","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11427055/pdf/","citationCount":"0","resultStr":"{\"title\":\"Texture perception at the foot sole: comparison between walking, sitting, and to the hand.\",\"authors\":\"Luke D Cleland, Mia Rupani, Celia R Blaise, Toby J Ellmers, Hannes P Saal\",\"doi\":\"10.1152/jn.00170.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We frequently interact with textured surfaces with both our feet and hands. Like texture's importance for grasping, texture perception via the foot sole might provide important signals about the stability of a surface, aiding in maintaining balance. However, how textures are perceived by the foot, and especially under the high forces experienced during walking, is unknown. The current study builds on extensive research investigating texture perception at the hand by presenting everyday textures to the foot while stepping onto them, exploring them with the foot while sitting, and exploring them with the hand. Participants rated each texture along three perceptual dimensions: roughness, hardness, and stickiness. Participants also rated how stable their posture felt when standing upon each texture. Results show that perceptual ratings of each textural dimension were highly correlated across conditions. Hardness exhibited the greatest consistency and stickiness the weakest. Moreover, correlations between stepping and exploration with the foot were lower than those between exploration with the foot and exploration with the hand, suggesting that mode of interaction (high vs. low force) impacts perception more than body region used (foot vs. hand). On an individual level, correlations between conditions were higher than those between participants, suggesting that differences are greater between individuals than between mode of interaction or body region. When investigating the relationship to perceived stability, only hardness contributed significantly, with harder surfaces rated as more stable. Overall, tactile perception appears consistent across body regions and interaction modes, although differences in perception are greater during walking.<b>NEW & NOTEWORTHY</b> We frequently interact with textured surfaces using our feet, but little is known about how textures on the foot sole are perceived as compared with the hand. Here, we show that roughness, hardness, and stickiness ratings are broadly consistent when stepping on textures, exploring them with the foot sole, or with the hand. Hardness also contributes to perceived stability.</p>\",\"PeriodicalId\":16563,\"journal\":{\"name\":\"Journal of neurophysiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11427055/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of neurophysiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1152/jn.00170.2024\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neurophysiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/jn.00170.2024","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/17 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

我们经常用脚和手与有纹理的表面互动。就像纹理对抓握的重要性一样,通过脚底感知纹理也可能提供有关表面稳定性的重要信号,从而帮助保持平衡。然而,人们还不知道脚底是如何感知纹理的,尤其是在行走过程中的高力情况下。目前的研究是在对手部纹理感知进行广泛研究的基础上进行的,研究方法是在踩踏日常纹理时向脚部展示这些纹理,在坐着时用脚探索这些纹理,以及用手探索这些纹理。参与者从粗糙度、硬度和粘性三个感知维度对每种纹理进行评分。参与者还对站在每种纹理上时的姿势稳定程度进行了评分。结果表明,对每种纹理维度的感知评分在不同条件下高度相关。硬度的一致性最强,粘性最弱。此外,用脚踩踏与用脚探索之间的相关性低于用脚探索与用手探索之间的相关性,这表明互动模式(高力与低力)比使用的身体区域(脚与手)对感知的影响更大。在个体层面上,条件之间的相关性高于参与者之间的相关性,这表明个体之间的差异大于互动方式或身体区域之间的差异。在调查与感知稳定性的关系时,只有硬度对感知稳定性有显著影响,较硬的表面被认为更稳定。总体而言,不同身体区域和互动模式的触觉感知似乎是一致的,但步行时的感知差异更大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Texture perception at the foot sole: comparison between walking, sitting, and to the hand.

We frequently interact with textured surfaces with both our feet and hands. Like texture's importance for grasping, texture perception via the foot sole might provide important signals about the stability of a surface, aiding in maintaining balance. However, how textures are perceived by the foot, and especially under the high forces experienced during walking, is unknown. The current study builds on extensive research investigating texture perception at the hand by presenting everyday textures to the foot while stepping onto them, exploring them with the foot while sitting, and exploring them with the hand. Participants rated each texture along three perceptual dimensions: roughness, hardness, and stickiness. Participants also rated how stable their posture felt when standing upon each texture. Results show that perceptual ratings of each textural dimension were highly correlated across conditions. Hardness exhibited the greatest consistency and stickiness the weakest. Moreover, correlations between stepping and exploration with the foot were lower than those between exploration with the foot and exploration with the hand, suggesting that mode of interaction (high vs. low force) impacts perception more than body region used (foot vs. hand). On an individual level, correlations between conditions were higher than those between participants, suggesting that differences are greater between individuals than between mode of interaction or body region. When investigating the relationship to perceived stability, only hardness contributed significantly, with harder surfaces rated as more stable. Overall, tactile perception appears consistent across body regions and interaction modes, although differences in perception are greater during walking.NEW & NOTEWORTHY We frequently interact with textured surfaces using our feet, but little is known about how textures on the foot sole are perceived as compared with the hand. Here, we show that roughness, hardness, and stickiness ratings are broadly consistent when stepping on textures, exploring them with the foot sole, or with the hand. Hardness also contributes to perceived stability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of neurophysiology
Journal of neurophysiology 医学-神经科学
CiteScore
4.80
自引率
8.00%
发文量
255
审稿时长
2-3 weeks
期刊介绍: The Journal of Neurophysiology publishes original articles on the function of the nervous system. All levels of function are included, from the membrane and cell to systems and behavior. Experimental approaches include molecular neurobiology, cell culture and slice preparations, membrane physiology, developmental neurobiology, functional neuroanatomy, neurochemistry, neuropharmacology, systems electrophysiology, imaging and mapping techniques, and behavioral analysis. Experimental preparations may be invertebrate or vertebrate species, including humans. Theoretical studies are acceptable if they are tied closely to the interpretation of experimental data and elucidate principles of broad interest.
期刊最新文献
A 5-week centrifuge-based G training with feedback on the magnitude of G force, does not improve the perception of roll tilt during simulated coordinated turns. ALTERED CONTROL OF BREATHING IN A RAT MODEL OF ALLERGIC LOWER AIRWAY INFLAMMATION. Ictal and interictal epileptic networks of 34 patients with Hypothalamic Hamartoma on scalp electroencephalography. Investigating premotor corticospinal excitability in fast and slow voluntary contractions of the elbow flexors. Rat movements reflect internal decision dynamics in an evidence accumulation task.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1