Young-Saeng Kim, Hyun-Sik Yun, Jae-Hak Lee, Kyung-Lak Lee, Jae-Sin Choi, Doo Hee Won, Yong Jae Kim, Han-Soon Kim, Ho-Sung Yoon
{"title":"比较元条码和显微镜方法分析朝鲜半岛南部沿海五个河口的硅藻群落","authors":"Young-Saeng Kim, Hyun-Sik Yun, Jae-Hak Lee, Kyung-Lak Lee, Jae-Sin Choi, Doo Hee Won, Yong Jae Kim, Han-Soon Kim, Ho-Sung Yoon","doi":"10.1007/s00248-024-02396-x","DOIUrl":null,"url":null,"abstract":"<p><p>The study of microalgal communities is critical for understanding aquatic ecosystems. These communities primarily comprise diatoms (Heterokontophyta), with two methods commonly used to study them: Microscopy and metabarcoding. However, these two methods often deliver different results; thus, their suitability for analyzing diatom communities is frequently debated and evaluated. This study used these two methods to analyze the diatom communities in identical water samples and compare the results. The taxonomy of the species constituting the diatom communities was confirmed, and both methods showed that species belonging to the orders Bacillariales and Naviculales (class Bacillariophyceae) are the most diverse. In the lower taxonomic levels (family, genus, and species), microscopy tended to show a bias toward detecting diatom species (Nitzschia frustulum, Nitzschia inconspicua, Nitzschia intermedia, Navicula gregaria, Navicula perminuta, Navicula recens, Navicula sp.) belonging to the Bacillariaceae and Naviculaceae families. The results of the two methods differed in identifying diatom species in the communities and analyzing their structural characteristics. These results are consistent with the fact that diatoms belonging to the genera Nitzschia and Navicula are abundant in the communities; furthermore, only the Illumina MiSeq data showed the abundance of the Melosira and Entomoneis genera. The results obtained from microscopy were superior to those of Illumina MiSeq regarding species-level identification. Based on the results obtained via microscopy and Illumina MiSeq, it was revealed that neither method is perfect and that each has clear strengths and weaknesses. Therefore, to analyze diatom communities effectively and accurately, these two methods should be combined.</p>","PeriodicalId":18708,"journal":{"name":"Microbial Ecology","volume":"87 1","pages":"95"},"PeriodicalIF":3.3000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11255046/pdf/","citationCount":"0","resultStr":"{\"title\":\"Comparison of Metabarcoding and Microscopy Methodologies to Analyze Diatom Communities in Five Estuaries Along the Southern Coast of the Korean Peninsula.\",\"authors\":\"Young-Saeng Kim, Hyun-Sik Yun, Jae-Hak Lee, Kyung-Lak Lee, Jae-Sin Choi, Doo Hee Won, Yong Jae Kim, Han-Soon Kim, Ho-Sung Yoon\",\"doi\":\"10.1007/s00248-024-02396-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The study of microalgal communities is critical for understanding aquatic ecosystems. These communities primarily comprise diatoms (Heterokontophyta), with two methods commonly used to study them: Microscopy and metabarcoding. However, these two methods often deliver different results; thus, their suitability for analyzing diatom communities is frequently debated and evaluated. This study used these two methods to analyze the diatom communities in identical water samples and compare the results. The taxonomy of the species constituting the diatom communities was confirmed, and both methods showed that species belonging to the orders Bacillariales and Naviculales (class Bacillariophyceae) are the most diverse. In the lower taxonomic levels (family, genus, and species), microscopy tended to show a bias toward detecting diatom species (Nitzschia frustulum, Nitzschia inconspicua, Nitzschia intermedia, Navicula gregaria, Navicula perminuta, Navicula recens, Navicula sp.) belonging to the Bacillariaceae and Naviculaceae families. The results of the two methods differed in identifying diatom species in the communities and analyzing their structural characteristics. These results are consistent with the fact that diatoms belonging to the genera Nitzschia and Navicula are abundant in the communities; furthermore, only the Illumina MiSeq data showed the abundance of the Melosira and Entomoneis genera. The results obtained from microscopy were superior to those of Illumina MiSeq regarding species-level identification. Based on the results obtained via microscopy and Illumina MiSeq, it was revealed that neither method is perfect and that each has clear strengths and weaknesses. Therefore, to analyze diatom communities effectively and accurately, these two methods should be combined.</p>\",\"PeriodicalId\":18708,\"journal\":{\"name\":\"Microbial Ecology\",\"volume\":\"87 1\",\"pages\":\"95\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11255046/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbial Ecology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00248-024-02396-x\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00248-024-02396-x","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
Comparison of Metabarcoding and Microscopy Methodologies to Analyze Diatom Communities in Five Estuaries Along the Southern Coast of the Korean Peninsula.
The study of microalgal communities is critical for understanding aquatic ecosystems. These communities primarily comprise diatoms (Heterokontophyta), with two methods commonly used to study them: Microscopy and metabarcoding. However, these two methods often deliver different results; thus, their suitability for analyzing diatom communities is frequently debated and evaluated. This study used these two methods to analyze the diatom communities in identical water samples and compare the results. The taxonomy of the species constituting the diatom communities was confirmed, and both methods showed that species belonging to the orders Bacillariales and Naviculales (class Bacillariophyceae) are the most diverse. In the lower taxonomic levels (family, genus, and species), microscopy tended to show a bias toward detecting diatom species (Nitzschia frustulum, Nitzschia inconspicua, Nitzschia intermedia, Navicula gregaria, Navicula perminuta, Navicula recens, Navicula sp.) belonging to the Bacillariaceae and Naviculaceae families. The results of the two methods differed in identifying diatom species in the communities and analyzing their structural characteristics. These results are consistent with the fact that diatoms belonging to the genera Nitzschia and Navicula are abundant in the communities; furthermore, only the Illumina MiSeq data showed the abundance of the Melosira and Entomoneis genera. The results obtained from microscopy were superior to those of Illumina MiSeq regarding species-level identification. Based on the results obtained via microscopy and Illumina MiSeq, it was revealed that neither method is perfect and that each has clear strengths and weaknesses. Therefore, to analyze diatom communities effectively and accurately, these two methods should be combined.
期刊介绍:
The journal Microbial Ecology was founded more than 50 years ago by Dr. Ralph Mitchell, Gordon McKay Professor of Applied Biology at Harvard University in Cambridge, MA. The journal has evolved to become a premier location for the presentation of manuscripts that represent advances in the field of microbial ecology. The journal has become a dedicated international forum for the presentation of high-quality scientific investigations of how microorganisms interact with their environment, with each other and with their hosts. Microbial Ecology offers articles of original research in full paper and note formats, as well as brief reviews and topical position papers.